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Allele frequency estimation at loci with
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Although allelic variants at a locus usually are expressed either dominantly or co-dominantly, there are many cases
when a gene is dominantly expressed in some individuals and co-dominantly in others. We present a maximum-
likelihood procedure for allele frequency estimation in such situations of “incomplete’ co-dominant gene expression at
an autosomal locus that segregates for two alleles. Our proposed estimator generally is less biased and has a smaller

sampling variance than those previously described.

INTRODUCTION

Estimation of allele frequencies presents a problem
when all genotypes at a locus cannot be directly
inferred from the phenotypes, as under dominant
gene expression. Estimators for various specific
cases, e.g., di-allelic loci with complete dominance
or the human ABO blood group system, are presen-
ted in many textbooks (e.g., Cavalli-Sforza and
Bodmer, 1971; Hedrick, 1983). However, it is not
clear which estimator should be applied when a
gene is dominantly expressed in some individuals
of a sample and co-dominantly in others, a situ-
ation that is frequently encountered when dealing
with, e.g., isozyme or blood group data. In this
paper we provide a maximume-likelihood estimator
applicable to samples where this type of “mixed
gene expression” occurs.

BACKGROUND

Although allelic variants detected by protein elec-
trophoresis usually are co-dominantly expressed,
and thus easily interpreted in terms of genotypes,
there are several exceptions to this general rule.
In addition to the presence of inactive (“null”)
alleles and co-migration of different gene products,
these exceptions include variable activity of gene
products and formation of secondary isozymes,
phenomenons that are highly dependent on such

variable factors as sample quality and technical
procedures (reviewed by Utter et al., 1987).

Gene expression may differ not only between
samples but also among individuals of the same
sample, and a locus may be treated as co-dominant
in one subset of the sample and as dominant in
another. Examples of such protein loci include
Cpk-1 and Ldh-1 (coding for creatine kinase and
lactate dehydrogenase) in brown trout (Salmo
trutta; Taggart et al., 1981; Ryman and Stahl, 1981;
Allendorf et al., 1984) and Sdh-1 (coding for sor-
bitol dehydrogenase) in Atlantic salmon (Salmo
salar; cf. Stahl, 1983; Cross and King, 1983). Typi-
cal examples of mixed gene expression also occur
for many blood group systems; using a single test
serum all the individuals are classified as
“dominant” and “‘recessive” phenotypes, whereas
only a subset are separated into homozygotes and
heterozygotes by use of additional test sera (e.g.,
Mourant et al., 1976).

An empirical example illustrating the problem
of allele frequency estimation is presented in table
1. Tissue samples from a total of 95 brown trout
were collected from a remotely located lake in
central Sweden. Sample collection took several
days. When scoring the autosomal Cpk-1 locus
that segregates for two alleles (I and 2), the
samples collected during the first few days (sub-
sample 1) showed lower activity than those collec-
ted subsequently (subsample 2). All the three
genotypes could be distinguished in subsample 2.
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Table 1 Distribution of phenotypes at the di-allelic Cpk-1
locus (alleles 1 and 2) in two subsamples of brown trout.
11 and 12 phenotypes which cannot be unambiguously
classified are designated “‘1-"".

Phenotype
Number of
Sample individuals 11 12 22 1-
Subsample 1 41 — — 2 39
Subsample 2 54 44 9 1 —
Total sample 95 44 9 3 39

In subsample 1 only the 22 homozygote could be
unambiguously identified, whereas the 11 and 12
genotypes were indistinguishable and had to be
lumped (1-).

Different standard procedures for estimating
the population allele frequency are conceivable in
this situation, none of which is entirely satisfactory.
First, all the individuals may be lumped and the
frequency of the [I-allele estimated as (e.g.,
Hedrick, 1983)

P=1-Ve/n (1)
with the sampling variance
A 1-(1-P)?
V(P) =~ an (2)
n

where ¢ is the number of 22 homozygotes in a
sample of n individuals. For the total data set
(n=95) these estimators yield P=(-822 and
V(P)=0-00255. Although the information about
P contained in the 11 and 12 phenotypes of sub-
sample 2 is ignored, this approach may appear
attractive because it makes use of all the
individuals sampled. On the other hand, the
maximum-likelihood estimator (1) is unbiased
only for large sample sizes (Elandt-Johnson, 1971).
The bias stems from the fact that the fraction of
22 genotypes (c¢/n) is an unbiased estimate of P°,
whereas the expectation (E) of a squared variable
(x?) is E(x*)=E*x)+V(x), (eg, Elandt-
Johnson, 1971) so that E(x*)> E*(x) when
V(x)>0. Thus, formula (1) tends to overestimate
P, and the bias may be considerable for population
allele frequencies above, say 0-7 or 0-8, even for
moderately large sample sizes (fig. 1).

Second, we may choose to ignore subsample
1 and estimate P from direct “counting” of the
alleles in subsample 2 only, using the estimators
(e.g., Hedrick, 1983)
2a+b

P=
2n

(3)
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Bias

Sample size

Figure 1 Bias (E(ﬁ)—P) of the estimator 13=1—\/c/n ata
di-allelic aytosomal locus (formula (1)). The expected
values of P (E(P)) were calculated from the binomial
distribution of dominant and recessive phenotypes for
different sample sizes and population allele frequencies
(P).

and
P(1-P)
2n

where a and b are the number of 11 and 12
genotypes, respectively. For subsample 2 (n = 54)
we obtain P=0-898 and V(P)=0-00085. This
approach is attractive because (3) is an unbiased
estimator of P, and in this particular example we
also obtain a smaller variance than previously.
However, the information about P contained in
subsample 1 is disregarded.

Third, using (1) and (3) separately we may
estimate P independently in each of the sub-
samples and produce a weighted average. Different
weighing factors may be applied, but it is not clear
which one is to be generally preferred. Weighing
by the inverse of the sampling variance may pro-
duce problems if the estimated sampling variance
is zero for either subsample. If weighing by sample
size it is not clear whether the number of
individuals (54) or the number of genes (108) is
to be preferred for subsample 2.

The difficulty in obtaining an appropriate esti-
mate is still more obvious if individuals cannot be
identified as belonging to either of the subsamples
1 or 2, i.e, if individuals exhibiting “dominant”
and ‘“co-dominant” expression are mixed in a
single sample, as for the total of table 1.

V(P)= (4)

DERIVATIONS

Consider an autosomal locus that segregates for
two alleles (1 and 2) in a randomly mating popula-
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tion. The 22 genotype can always be identified.
Among the individuals of the 11 and 12 genotypes
a fraction D cannot be told apart (designated
“1-""), whereas the genotype of the others (a frac-
tion 1 — D) can be unambiguously identified (the
probability D being the same for the 11 and 12
genotypes). The different phenotypes and their
expected numbers in a sample of n individuals are
given in table 2.

Estimation of allele frequency

Following the standard procedures for maximum-
likelihood estimation (e.g., Fisher, 1958; Elandt-
Johnson, 1971) we choose as an estimate the value
of P that maximizes the probability of the observed
numbers. Given the expectations in table 2, this
probability is

Prob =aT’:c'E {D[P*+2P(1-P)}}*
x[(1-D)P*]°[(1-D)2P(1-P)}®
x (1= P)*.

The logarithm of this probability function attains
its maximum for the same values of P and D as
the probability function itself, so we simplify the
computations by taking the logarithm (In),
obtaining
L=1n (Prob)
=dinD+(a+b)In(1-=D)+dIn(2—-P)
+(2a+b+d)In P+(b+2¢)In(1-P)+K

where K is a constant. The values of P and D that
maximize L are the values for which the derivatives
of L equal zero, such that
8L -d 2a+b+d (b+2c)_0
1-p

8P 2-P P
and
8L d (a+b)_0

sD D 1-D
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Solving for P and D provides the estimators
p_2n +a+b/2-V(2n—a—-b/2)*-4nd
2n ’
(5)
and
A d
D= . (6)
n—c

Note that (5) simplifies to (1) and (3) when applied
to cases of complete dominance (a=b=0) and
co-dominance (d = 0), respectively.

Sampling variance

The theoretical sampling variances are obtained
through the second derivatives of the likelihood
function L, which are

ﬂ__ d  (2a+b+d) (b+2c)
5P? (2-P)? P? (1-p)*
8°L_ d (a+bh)
8D*  D? (1-D)*
and
8L
5PsD

Substitution for the maximum-likelihood estimates
in the variance-covariance matrix yields

s 1 (2-P)P(1-P)
vip) = 82L/8P* 4n—2n(1+D)P’ )
a1 DO-D)
D) ==~ n-c ®)
and
Cov (D, P)=0. 9)

Note that D and P are uncorrelated, and that (7)
simplifies to (2) and (4) in the case of complete
dominance (D=1) and co-dominance (D =0),
respectively.

Table2 Observed and expected number of phenotypes at an autosomal di-allelic locus (alleles
1 and 2) in a sample of n individuals (n=a+b+c+d). 11 and 12 phenotypes which
cannot be unambiguously classified are designated ““1-". P is the frequency of the
occasionally “‘dominant” I-allele, and D is the fraction of individuals expressing the
dominant phenotype relative to all individuals carrying the 1- allele.

Phenotype 11 12 22
Observed a b c

Expected n(1—D)P? n(1-D)2P(1-P)

n(1- P)?

1-
d
nD[P?+2P(1- P)]
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Table 3 Mean (p) and variance (s
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multiplied by 10°) of allele frequency estimates (p) obtained by computer simulation.

P =population frequency of the occasionally dominant allele; n, and n, are the sizes of two independent subsamples 1 and 2
which are characterized by dominant and co-dominant gene expression, respectively (n, + n, = 50). Direct estimates were obtained
by applying formulae (5) and (1) to the total sample (n, +n,) and formula (3) to subsample 2 only (n,); weighted estimates
were obtained through weighing by the inverse of the variances, by n; and n,, and by n, and 2n,. Each simulation was based

on 10,000 runs.

Direct estimates (sample size)

Weighted estimates (weighing factors)

Sample Formula (5) Formula (1) Formula (3) Inverse Sample size Sample size

sizes (ny+ny) (ny+n,) (ny) variances (n, and n,) (n, and 2n,)
p neonp p (s3) p (s2) p p (s2) P (s) p (s)
095 25 25 04951 (85) 0-983  (221) 0950 ) 0:953 (78) 0-969 (82) 0-963 (68)
095 40 10 0-954 (157) 0-983  (221) 0-950 ) 0960 (142) 0977  (157) 0-973  (128)
0-95 10 40 0950 (57) 0-982  (230) 0-950 ) 0951 (54) 0-958 (48) 0-954 (49)
090 25 25 0901 (149) 0-938 (617) 0-900 (178)  0-908 (140) 0927  (239) 0-918  (166)
090 40 10 0906 (259) 0-939  (610) 0-901 (442) 0918 (260) 0-935  (448) 0-929  (348)
090 10 40 0901 (107) 0:940  (606) 0-900 (113) 0903 (103) 0-914 (107) 0-908  (100)
0-70 25 25 0-702 (291) 0-709  (539) 0-700 (427)  0-706 (344) 0-713  (457) 0-708  (346)
0-70 40 10 0-704 (379) 0-709  (538) 0-699 (1050) 0711  (458) 0-710  (505) 0-708  (438)
070 10 40 0-699 (236) 0:707  (529) 0-698 (262)  0-699 (272) 0-713  (320) 0-707  (255)

BIAS AND EFFICIENCY

An expression describing the efficiency of (5) rela-
tive to other estimators can be obtained from com-
parisons of the theoretical (large-sample) vari-
ances (e.g., Elandt-Johnson, 1971). For instance,
the efficiency of (5) relative to (1) (i.e., estimating
F from the frequency of recessive homozygotes)
is given by the ratio of (2) and (7). This ratio is
{2-(+D)P)/(2—-2P)}, which is always larger
than unity (ie., (5) is more efficient) except for
D =1, in which case (7) and (2) are identical (see
above). Similarly, the efficiency of (5) relative to
(3) applied to subsample 2 only (where the alleles
are co-dominantly expressed) is {(n/n,)(2—
(1+D)P)/(2— P)}. This quantity is also always
larger than unity except for the case of n=n,
(implying D =1), when (7) reduces to (4).

Strictly, the above efficiency comparisons are
valid only for large samples, and bias is not taken
into account. Of course, there is no point in striving
at an estimator with a small sample variance if
bias is unduly large; likewise, a minor bias can be
accepted if a significant reduction of variance is
gained.

We used computer simulations to evaluate bias
and efficiency of our estimator (5) relative to a
number of alternative ones, noting that only (1)
and (5) can be applied in cases where individuals
cannot be identified as belonging to a particular
subsample (cf. table 1). Table 3 presents some
simulation results for P values for which a large

bias may be expected (fig. 1) and for the sample
size n=50. Each simulation comprised 10,000
runs. When weighing by the inverse of the sampling
variances occasional runs gave V(P)=0; in those
particular runs formula (1) was applied to avoid
division by zero.

The simulation results indicate that our
estimator (5) is to be preferred in most situations.
First, it generally has a smaller sample variance
than other estimators (table 3). Second, bias is
always small or negligible, and the improvement
is particularly conspicuous when comparing with
(1) or with any of the weighted estimates (which
all include the application of (1)). Of course, dis-
regarding subsample 1 (dominant expression) and
applying formula (3) to subsample 2 only (co-
dominant expression) always yields an unbiased
estimate; however, the smaller sample size results
in an increase of the variance that generally cannot
justify the reduction of bias.
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