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Age structure, environmental
fluctuations, and hermaphroditic
sex allocation

Shripad Tuijapurkar Biological Sciences, Stanford University, Stanford, CA
94305, U.S.A.

This paper studies sex allocation in an age-structured population of hermaphrodites living in a temporally fluctuating
environment. The general condition for the evolutionary stable state (ESS) of allocation is derived for density-
independent dynamics. This condition is used to determine the effect on the deterministic ESS of a dependence of
survival rates on allocation. It is also used to identify the special conditions under which a stochastic ESS is given
by a product rule and show how demographic structure and the correlation structure of vital rates determines the
stochastic ESS.

INTRODUCTION

Charnov (1982) defines sex allocation to include
the evolution of sex ratio in dioecious species, sex
change in sequential hermaphrodites, and the allo-
cation of resources to male versus female function
in simultaneous hermaphrodites. Given simplify-
ing assumptions about population structure, a
phenotypic ESS (evolutionarily stable state: May-
nard Smith 1982) in each of these problems obeys
a general optimality principle derived by Charnov
(1979, 1982). The addition of realistic features of
population structure and environment can lead to
very different types of ESS. Werren and Charnov
(1978) and Seger (1983) demonstrated theoreti.
cally the effect of changing age structure on sex
ratio. Bierzychudek (1984) demonstrated experi-
mentally the joint effect of age structure and tem-
poral variability on sex change in a sequential
hermaphrodite. Charnov (1988) studied the ESS
for sex allocation in a hermaphrodite using simple
models of overlapping generations, and initiated
a study of the effects of temporal variability.

This paper considers sex allocation in an age-
structured, density-independent population of
simultaneous hermaphrodites in a temporally vari-
able environment. I describe temporal variation by
taking population vital rates to be random station-
ary time-series. My definition of an ESS, as in
Charnov (1979), Charlesworth (1980) and Tul-
japurkar (1982), is based on analysis of the

dynamics of rare alleles at a single diploid locus.
The main results are:

(1) Derivation of the general criterion which
defines an evolutionarily stable (ES) sex allo-
cation.

(2) A special case of the above criterion describes
age-structured populations in a constant
environment. I use it to show how the ESS
shifts when survival rates depend on sex allo-
cation.

(3) Identification of conditions under which the
criterion of (1) reduces to Charnov's (1986,
1988) production-maximization rule. The key
assumptions are that the shape of the female
production function does not vary with age or
over time, and the shape of the male produc-
tion function is age-independent and uncorre-
lated with all other time-varying quantities.

(4) An example is used to show how age and
uncertainty interact to determine the ESS
when the special conditions in (3) are not met.

ESS WITH AGE STRUCTURE AND
TEMPORAL VARIATION

I follow Charnov (1982, 1988) and consider a large
hermaphroditic plant population. There are k dis-
crete age classes (seeds are age class 1) and mating
is random. Initially all individuals are homozygous
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for allele A at the locus which controls allocation
between pollen and seeds. Define:
r, the fraction of resources allocated at every age
to pollen (versus seeds);
F,(r, t), the per capita seed set in age-class ifrom
time (—1 to t;
M(,; t), the per capita pollen produced in age-
class i from t—1 to t;
S(r, t), the survival rate of age-class i individuals
from time t — I to t;
N(t), the number of age-class i individuals at time

The dynamics of this population of AA's follow
the equation

N1(t) F1(r, t)
N2(t) = S,(r, t)

Nk(t) 0

Fk(r, t) 1V1(t—1)
0 N2(t—1)

. (1)

Sk_l(r, t) 0 Nk(t—1)

The time-dependence of vital rates in (1) derives
from a randomly varying environment. In a real
plant population, age-class 1 will be seeds and so
F1 =0. However, it is convenient to do the analysis
with F1 present, especially for comparison with
simple non-age-structured models. I assume that
(a) the vital rates form a stationary stochastic

process,
(b) the moments of the vital rates are bounded,
(c) the stochastic process has a rapidly disappear-

ing memory of its past,
(d) demographic weak ergodicity holds for the

random rates.
More general assumptions can be made; see, e.g.
Heyde and Cohen (1985) without changing what
follows. With assumptions (a)-(d) the dynamics
of (1) have two particularly important features.
First, the population growth rate is a nonrandom
number

a=lim-log N(t)t-t Li

Second, the population age-structure (the ratios
Y(t) = N(t)/[ N,(t)]) converges to a random
time-dependent sequence independent of the
initial population.

Consider now the fate of a rare allele B which
causes heterozygotes AB to allocate a fraction r1
of resources to pollen. Initially allele B is carried

mainly by heterozygotes. Let

E(t) = (r1(t), E2(t), .. .,

be the age-vector of heterozygote population num-
bers. I now obtain an equation which describes
changes when e is small (as in Charnov, 1979;
Tuljapurkar, 1982). Seeds produced by AB's will,
to a good approximation, be fertilized by AA pol-
len so half of these seeds will be AB. Pollen from
AB's will compete with AA pollen to fertilize
mostly AA seeds; half of the successful fertiliz-
ations so produced will be AB. Hence the number
of AB seeds changes as

= F(r, t)e1(t -1)[ F(r, t)N(t —1)]+
2[ M(i t)N1( —1)] M(r1, t)E1(t —1),

='I'1(t)e(t—1), say.
On the right side of the first line above, divide

numerator and denominator by the total number
of AA to find

'I'1(t)=F,(r1, t)
[ F(r, t) Y(t —1)]

M1(r, t) (t- 1] M1(r1, t). (2)

Here Y1 ( t — 1) is the proportion of AA in age-class
i at time t — 1 in the homozygous population of
equation (1). Thus heterozygote numbers follow
the linear equation

1(t) I'2(t)

E(t+ 1) = S1(r, t) 0

0

The sequence of random matrices in this equation
yields a (nonrandom) growth rate a1, which
depends on both r and r1. Allele B invades (i.e.,
increases in frequency) if

a1>a. (4)

— a1(r1, r)1r1. = 0. (5)

Readers unfamiliar with the stochastic growth
rate a should think of it as the exponential growth
rate resulting from the application of a long series
of matrices with the appropriate random elements.
(See Tuijapurkar and Orzack, 1980; Cohen, 1979;

F2(r, t) F3(r, t)
0

9

0

0

Sk_l(r, t) 0

(3)

(2) The condition for an ESS is
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STOCHASTIC RULE FOR ESS ALLOCATION

Condition (5) is general but not directly useable;
I will now translate it into an interpretable form.
In equation (1), denote the (random) matrix by
X(t). The sequence X(1), X(2), X(3), etc., is a
stationary random process, and it determines a
time-dependent random set of age-structure vec-
tors U(t) and reproductive value vectors V(t),
such that the product

U(t)VT(t)
(X(t)X(t- 1). X(1)) Pr(vT(t)U(t))• (6)

Here T indicates a transpose, p, is the growth rate
over t generations, and the symbol "—" means
that the two sides are asymptotically equal as I - cx.

We can compute U(t), V(t) as the right, left eigen-
vectors for the dominant eigenvalue of the product
matrix in (6). The age-structure of the resident AA
homozygotes in (1), given by Y(t), converges to
U(t) as t increases, independent of the initial stage.
The one-period growth rate of AA's at time t is
given by

A ( t + 1) = (X( t + 1) U( t) )

In the Appendix, I show that (5) reduces to
the condition

Tuljapurkar, 1989 for further details on random
demography).

(7)

This stochastic rule is best understood by
examining special cases in which old results are
recovered and new ones uncovered.

SPECIAL CASES

(i) Fluctuating environment, no age structure

This is the case studied by Bull (1981) and Charnov
(1986). In my formulation, the absence of age-
structure means that only F1(t) 0 in (1) and
only 'V1(t) 0 in (2). The vectors in (8) reduce to
U(t)=V(t)1 while A(t)=F1(t), and F=F1,
M = M1. The general stochastic rule (8) reduces
to Charnov's (1986, 1988) product rule

Ii 9F1 1 8M11
EJ—-——+-————-I=0. (14)

LF13r M1 arJ
The term "product rule" derives from the
equivalence of (14) to the maximization of
E log (M1 F1).

(ii) Age structure, constant environment

Here the random quantities in (1) and (3) are fixed,
and a in (2) is just the usual Malthusian parameter
log ho. Defining survivorships

1 = 1, 12 = SI, 13 = S2S1, etc., (15)

we have the characteristic equation

A'l1F=1. (16)

The age-vectors U(t) in (8) equal the stable age-
distribution U with components

U1Cl1A. (17)

The vectors V(t) in (8) equal the reproductive
value vector V, whose components are known (e.g.,
Caswell, 1978) to be

[AJ-1]. (18)

Using these relationships (8) reduces to

(19)

(object1) = A'l1 (object)1, (20a)

ä(object)0(object) = , (20b)ar

I V(t)z(i) U(t — 1)1

E1 A(t)(VT(t)U(t)) j=0,
(8)

with

/"F(t) 'I'(t) . . 'I'(t) \

(

S(t) 0 0
(9)

0 0 S_1(t) 0/
r aF 1 aM,
LF(r, t) ar (r, t) är'V(t) =F(r, 1) —+ — (10)

(r, t) = F1(r, t) (1(1—1), (11)

M(r, t) = M1(r, t) U(t —1), (12) Here

aS1(r, t)S(t)= . (13)ar

I refer to (8) as the Rule for Stochastic Evolution-
ary Stability.
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g= (20c)
ji±1

In the case where survival rates S, do not
depend on r, (19) reduces to a condition analogous
to that of Charnov (1979) for a similar but different
allocation problem.

(iii) Survival rate changing with r in a
constant environment

When survival varies with sex allocation, the ESS
for r can be computed from (19); this is a new
result. I expect survival rates to depend on r,
because as r increases, the production of females
decreases relative to males. If female offspring are
more expensive to produce than males, and an
individual's energy resources are divided between
reproduction and maintenance, adult survival
should increase with r.

The main effect of survival rate on the ESS is
revealed by a simple example, based on Charnov
(1988). Consider male and female allocation func-
tions which have the forms

IYf(r) =

F(r) = f3W(1 — r).
Here we separate the production levels (measured
by Z, W) from the shapes of the production func-
tions (measured by g, h). Age dependence is con-
tained in a, and f3. Assume also that

S(r) = S(r) for all age-classes i. (22)

The stochastic rule (19) now reduces to

(23)r 1—r

where S' = (dS/dr) and the mean length of gener-
ation is

TilFA>l (24)

In the cases analyzed by Charnov (1982, 1988),
S'=O. If S'>O (i.e., survival rate goes up when
more male than female ospring are produced),
the ES value of r is greater than when S' =0. Fig.
I illustrates the solution of (23) and the shift in
ESS. Note that the impact of 5' in (23) is magnified
by (T0 — 1); T0 is a reproduction-weighted average
lifespan (see (24)).

THE STOCHASTIC AGE-STRUCTURED ESS

(i) Structure of the stochastic rule for
evolutionary stability

Focus now on the general stochastic rule. Doing
the multiplication in the denominator of (8), using
(1) and (7), and using (10), the stochastic rule can
be rewritten as

E1 1 Ivi(t)F(f+L
l(+)(VT(t)U(t)) [ 2 F M

k—i

+
Vc+i(t)Ui(t_1)Sj=0. (25)

i=1

The bars are defined as in (11) and

(aF)aF(rt) U(t-1). (26)

The stochastic condition (25) should be compared
with the deterministic version (19).

Condition (25) looks much more complicated
than Charnov's (1986) product rule which is
exemplified by (14). I will first show that (25)

and

Cu -

survival-shifted ESS

I I I

(21)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1 The curves shown intersect at the deterministic ESS.
When survival rate increases with allocation, the ESS is
shifted to the right as shown. See text equation (22).
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simplifies to a product rule under certain condi-
tions.

(ii) Simplifying assumptions which yield a
product rule

The most general conditions under which (25)
reduces to a product rule are:
(a) survival rates do not vary with allocation;
(b) male and female production functions are

separable into shape and level (compare (21));
(c) there is no age-dependence of the shape of the

production functions;
(d) there is no randomness in the shape of female

production function;
(e) the shape of the male production function

varies randomly but is uncorrelated with the
female production function.

These conditions imply that

M1(r, t) = a(t)Z(t)!VI(r),

F(r, t)=f31(t)1V(t)f(r),

where f is deterministic, and M is uncorrelated
with the /3, and W. In addition S =0. From (25)
and (27) note that=W(t)18f, M=Z(t)dM',
so (8) becomes

E1 V1(t)W(t)1f [+- —0
(pWf+)(VT(t)U(t))Lf M

—

Now use assumption (e) above to see that ESS
allocation satisfies the product rule

If' M'lEl —+— 1=0.
Lf MJ

The simplification (30) is remarkable but
depends critically on the assumptions. If either
assumption (d) or (e) fails to hold, we cannot
factor (30) out of (29). If assumption (a) does not
hold, we must add to the left of (29) tems involving
S. If assumptions (b) or (c) do not hold, the
reduction of (8) to (29) does not go through.

(iii) Fluctuations in female production: beyond
the product rule

The detailed structure of the stochastic rule (8)
covers many possibilities. I will consider here only
a simple model for an iterocarpic (perennial) plant
which illustrates the interplay between fluctuations
and demography in determining an ESS. For a
population of homozygotes AA which have alloca-

F(r, t) = W(t)f(r, t)

Mr(r, t) = Z(t)m(r, t),

—vCov(Wf, Wf4')=O.

tion fraction r, I collect all reproducing adults into
age-class 2 and write the dynamic equation

(N1(t+1f' (0 F(r, t)\(N1(t)
N2(t+ 1))

-
\s P(t) AN2(t) . (31)

As in the discussion subsequent to equation (1),
the age-vector of heterozygotes carrying a rare
invading allele B obeys the linearized equation

(Ei(t+ 1)\ (0 P(r, r1, t)\(Ei(t) 32\ E(t+ 1)) \s P(t) )E2(t) '
I take male and female production functions to
have the form

(33)

where f, m are randomly varying shape functions.
This implies that in (32),

(27) '(r, r1, t)=[f(ri, t)+ t)
m(r1, t)].2 m(r, t)

(34)

The general equation (8) is analytically intract-
able even for this model, so I will concentrate on
the case where the fluctuations in W(i) are small

(28) in magnitude. I can then use expansion methods
(Tuijapurkar, 1982, 1989) to obtain an equation
for a(r, r1), the heterozygote growth rate, and then

(29)
differentiate as in (5). Details are in the Appendix;
the stochastic rule reduces to the condition

(1 —/3u— yCF)E(Wfcb')

(35)

(30) Here Coy indicates a covariance; /3, y, v are con-
stants determined by the average demographic
rates (see Appendix); cr is the variance of P(t);

Var(Wf)E(W2f2)—E2(Wf)
WF E2(Wf) -

E2(Wf)
(36)

and
1 am 1 af—+ —. (37)m(r, t) ar f(r, t) är

Recall that the product rule is simply E (') =0.
However (35) is quite different because F is corre-
lated with q' and so averages such as E(Wfçb')
behave quite differently from E(/'). This is true
even if W and f are uncorrelated. Whenever the
female shape function changes randomly over
time, the ESS predicted by (35) will not be the
same as predicted by a product rule.
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Note that the level of male production, Z(t),
does not enter the ESS condition. Thus correlations
between m(r, t) and Z(t) have no effect. However,
correlations between m(r, t) and either W(t) or
f(r, t) have direct effect on (35).

DISCUSSION

This paper presents a general criterion, equation
(8), defining ES sex-allocation for an age-struc-
tured population in a fluctuating environment.
Three special conditions are required to reduce (8)
to a version of Charnov's (1986) product rule. They
are:
(a) the shape of the female and male production

functions does not change with age;
(b) the shape of the female production function

does not vary over time;
(c) fluctuations in the shape of the male produc-

tion function are statistically independent of
all other variation.
Fluctuations in the female shape function com-

plicate the ESS criterion considerably. Correla-
tions between the male shape function and male
level of production are irrelevant to the ESS. But
correlations between all other components of pro-
duction do matter.

When survival rates change with sex-allocation,
the ESS shifts in the direction expected from a
consideration of the relative costs of the two sexes.
The impact of survival rates at a particular age
depends also on the fraction of lifetime reproduc-
tion which occurs up to that age.

Interesting open issues remain: the effect of
cyclical variation in production; the possibility that
the sex-allocation fraction is age-dependent;
whether the stochastic rule (8) derived here allows
multiple ESS's; and, the enormous range of
stochastic genetic questions which complement
those explored by Karlin and Lessard (1986).

where A(t) is defined in (7) and

?7(t)= (VT(t)X(t)),.

The stochastic growth rate is defined as

a = urn a,

(A2)

=! log [ VT(n)X(n)X(n -1). X(1)U(O)].

If the X(t) depends on an argument r, the deriva-
tive (aa/ar) is computed by replacing X(t) in (A2)
by X(t)+ ijX'(t) where X'=(9X/ar), so that a
changes to a + i1b. Then (8a/9r) equals Lim (bn)
as n - x. Copying the methods in Tuljapurkar
(1982, Appendix),

b VT(j)X'(j)UU-l)
n-njl AU)VTU)U(j))

I VT(t)X'(t) U(t —1))
lim bn=E1 A(t)(VT(t)U(t)) j. (A3)fl —,dXs

In this paper the matrix sequence we differenti-
ate is actually the one in equation (3) of the text.
However, to complete the calculation we must set
r1 = r in accordance with (5). Therefore (A3) gives
the correct value of (9a1/ar1) when r1 = r, with
X'(t) replaced by the matrix of equation (9).

(ii) Stochastic growth rate for (32)

The method used is derived in Tuljapurkar (1982);
see Lande (1987) for a different application. Start
with the average of the matrix in (32), given by

(0 , where=E'I',p=EP.\s P1
This has ______
(a) dominant eigenvalue A =(p/2)+Ip2+s,;
(b) corresponding right eigenvector UT =

(1, A/i/i);
(c) corresponding left eigenvector VT =(1, A/s).
Let T= VTU. The formula in Tuijapurkar (1982)
asserts that for small fluctuations in 'I' and P the
stochastic growth rate of the heterozygote is

(Al) (A4)

and

APPENDIX

(I) Deriving (8)
The vectors defined in (6) are described fully by
Hajnal (1976), Tuijapurkar (1982, 1989). The
sequences V(t), U(t) satisfy the recursions

X(t)LJ(t—l)U(t)=
A (t)

VT(t)X(t)VT(t_l)= (t)
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where o- is the variance of 'I' and o- the variance
of P. To compute (3a/9r1), use the characteristic
polynomial of the average matrix to find that

9r1 r1=r

Using these in (A4) one finds that

(2A(A —p)T'\(aa
s r=r

= E(Wfçb') 1 —p)—

T}][ T3(A —p)3

[
A(A—p) kp 1

+E(Wf')CF sTE(Wf)T3(A_p)21

A(A—p)
Cov(Wf WfqY).

sTE2(Wf)
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