Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic analysis of adult locomotor activity in Drosophila melanogaster

Abstract

This study is an attempt to identify genes influencing spontaneous adult locomotor activity in Drosophila melanogaster. A wild type stock and 13 morphological marker stocks (six markers for chromosome X and seven for chromosome three have been used). Backcrosses have been set up to study linkage relationships between loci affecting the quantitative character and marker loci. The results suggest the presence of several genes influencing locomotor activity on both chromosomes analyzed.

References

  1. Angus, J. 1974. Genetic control of activity, preening, and the response to a shadow stimulus in Drosophila melanogaster. Behav Genet, 4, 317–329.

    CAS  Article  Google Scholar 

  2. Beckmann, J S, and Soller, M. 1983. Restriction fragment length polymorphism in genetic improvement methodologies, mapping and costs. Theor Appl Genet, 67, 35–43.

    CAS  Article  Google Scholar 

  3. Burnet, B, and Connolly, K. 1974. Activity and sexual behaviour in Drosophila melanogaster. In Abeelen, J. H. F. van (ed.) The Genetics of Behaviour, North-Holland Publishing Company, Amsterdam, Oxford, pp. 201–258.

    Google Scholar 

  4. Burnet, B, Burnet, L, Connolly, K, and Williamson, N. 1988. A genetic analysis of locomotor activity in Drosophila melanogaster. Heredity, 61, 111–119.

    Article  Google Scholar 

  5. Connolly, K. 1966. Locomotor activity in Drosophila. II. Selection for active and inactive strains. Anim Behav, 14, 444–449.

    CAS  Article  Google Scholar 

  6. Connolly, K. 1967. Locomotor activity in Drosophila. III. A distinction between activity and reactivity. Anim Behav, 15, 149–152.

    CAS  Article  Google Scholar 

  7. Chotai, J. 1984. On the lod score method in linkage analysis. Ann Hum Genet, 48, 359–378.

    CAS  Article  Google Scholar 

  8. van Dijken, F R, and Scharloo, W. 1979a. Divergent selection on locomotor activity in Drosophila melanogaster. I. Selection response. Behav Genet, 9, 543–553.

    CAS  Article  Google Scholar 

  9. van Dijken, F R, and Scharloo, W. 1979b. Divergent selection on locomotor activity in Drosophila melanogaster. II. Test for reproductive isolation between selected lines. Behav Genet, 9, 555–561.

    CAS  Article  Google Scholar 

  10. van Dijken, F R, Sambeek, MPJW van, and Scharloo, W. 1979. Divergent selection on locomotor activity in Drosophila melanogaster. III. Genetic analysis. Behav Genet, 9, 563–570.

    CAS  Article  Google Scholar 

  11. van Dijken, F R, Stolwijk, H, and Scharloo, W. 1977. Locomotor activity in Drosophila melanogaster. Neth J Zool, 35, 438–454.

    Google Scholar 

  12. Ewing, A W. 1963. Attempts to select for spontaneous activity in Drosophila melanogaster. Anim Behav, 11, 369–378.

    Article  Google Scholar 

  13. Hill, A P. 1975. Quantitative linkage: a statistical procedure for its detection and estimation. Ann Hum Genet, 38, 439–450.

    CAS  Article  Google Scholar 

  14. Jayakar, S D. 1970. On the detection and estimation of linkage between a locus influencing a quantitative character and a marker locus. Biometrics, 26, 451–464.

    CAS  Article  Google Scholar 

  15. Jayakar, S D, Della Croce, L, Scacchi, M, and Guazzotti, G. 1977. A genetic linkage study of a quantitative trait in Drosophila melanogaster. Proc Internat Conf on Quantitative Genetics, Iowa State University Press, Ames, Iowa, pp. 161–175.

    Google Scholar 

  16. Kyriacou, C P. 1981. The relationship between locomotor activity and sexual behaviour in ebony strains of Drosophila melanogaster. Anim Behav, 29, 462–471.

    Article  Google Scholar 

  17. Le Bourg, E, and Lints, F A. 1984. A longitudinal study of the effects of age on spontaneous locomotor activity in Drosophila melanogaster. Gerontology, 30, 79–86.

    CAS  Article  Google Scholar 

  18. Le Bourg, E, Lints, F A, and Lints, C V. 1984. Does a relationship exist between spontaneous locomotor activity, fitness and lifespan in Drosophila melanogaster? Exp Geront, 19, 205–210.

    CAS  Article  Google Scholar 

  19. Lindsley, D L, and Grell, E H. 1972. Genetic variations of Drosophila melanogaster, Carnegie Inst of Wash Publ 627, 1–471.

  20. Lints, F A, Le Bourg, E, and Lints, C V. 1984. Spontaneous locomotor activity and lifespan: a test of the rate of living theory in Drosophila melanogaster. Gerontology, 30, 376–387.

    CAS  Article  Google Scholar 

  21. Lints, F A, Le Bourg, E, and Lints, C V. 1985. An attempt to select for spontaneous locomotor activity in Drosophila melanogaster. Behav Proc, 11, 97–102.

    Article  Google Scholar 

  22. Maroni, G, Laurie-Ahlberg, C C, Adams, A D, and Wilton, A N. 1982. Genetic variation in the expression of ADH in Drosophila melanogaster. Genetics, 101, 431–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meehan, M J, and Wilson, R. 1987. Locomotor activity in the Tyr-1 mutant of Drosophila melanogaster. Behav Genet, 17, 503–512.

    CAS  Article  Google Scholar 

  24. Mittler, S, and Bennet, J. 1962. A simple food medium that requires no live yeast with a minimum of variables. Drosophila Inform Serv, 36, 131–132.

    Google Scholar 

  25. O'Dell, K, and Burnet, B. 1988. The effects on locomotor activity and reactivity of the hypoactive and inactive mutations of Drosophila melanogaster. Heredity, 61, 199–207.

    Article  Google Scholar 

  26. Schnee, F B, Thompson, Jr, J N. 1984. Conditional polygenic effects in the sternopleural bristle system of Drosophila melanogaster. Genetics, 118, 437–443.

    Google Scholar 

  27. Sewell, D, Burnet, B, and Connolly, K. 1975. Genetic analysis of larval feeding behaviour in Drosophila melanogaster. Genet Res Camb, 24, 163–173.

    Article  Google Scholar 

  28. Shrimpton, A E, and Robertson, A. 1988a. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. I. Allocation of third chromosome sternopleural bristle effects to chromosome sections. Genetics, 118, 437–443.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shrimpton, A E, and Robertson, A. 1988b. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. II. Distribution of third chromosome bristle effects within chromosome sections. Genetics, 118, 445–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanksley, S D, Medina-Filho, H, and Rick, C M. 1982. Use of naturally occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity, 49, 11–25.

    Article  Google Scholar 

  31. Thoday, J M. 1961. Location of polygenes. Nature, 191, 368–370.

    Article  Google Scholar 

  32. Thoday, J M. 1966. New insights into continuous variation. In Proc Third Int Cong Hum Genet

  33. Thompson, J N, Jr, and Thoday, J M. 1979. Quantitative Genetic Variation. Academic Press, London.

    Google Scholar 

  34. Thompson, J N, Schnee, F B, and Seale, T W. 1983. Polygenic analysis of larval locomotor activity in Drosophila melanogaster. Behav Genet, 13, 579–589.

    Article  Google Scholar 

  35. Tukey, J W. 1977. Exploratory data analysis. Addison Wesley Publ. Comp.

    Google Scholar 

  36. Tunnicliff, G, Rick, J T, and Connolly, K. 1969. Locomotor activity in Drosophila. V. A comparative biochemical study of selectively bred populations. Comp Biochem Physiol, 29, 1239–1245.

    CAS  Article  Google Scholar 

  37. Vaj, E, and Jayakar, R D. 1976. Genetic studies on locomotor activity in Drosophila. Atti Ass Genet It, 21, 208–210.

    Google Scholar 

  38. Vallejos, C E, and Tanksley, S D. 1983. Segregation of isozymes markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet, 66, 241–247.

    CAS  Article  Google Scholar 

  39. Weller, J I. 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 42, 627–641.

    CAS  Article  Google Scholar 

  40. Weller, J I. 1987. Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity, 59, 413–421.

    Article  Google Scholar 

  41. Weller, J I, Soller, M, and Brody, T. 1988. Linkage analysis of quantitative traits in an interspecific cross of tormato (L. esculentum × L. pimpinellifolium) by means of genetic markers. Genetics, 118, 329–339.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Costa, R., Zonta, L., Osti, M. et al. Genetic analysis of adult locomotor activity in Drosophila melanogaster. Heredity 63, 107–117 (1989). https://doi.org/10.1038/hdy.1989.81

Download citation

Further reading

Search

Quick links