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A new look at Jinks—Hayman's method
for the estimation of genetical
components in diallel crosses
Pedro E. Ferreira Catie, Turrialba 7170, Costa Rica.

A new interpretation of the assumption which states that genes are independently distributed across the parents leads
to the construction of new estimates of the genetical components D, H1, H2 and F. Simulation experiments are used
to compare the new estimates with the classical ones and with an improved (unbiased) version of those estimates. The
new estimates show a better behaviour than their competitors in terms of bias and mean square deviation, especially
for small diallels.

INTRODUCTION

Jinks and Hayman's method of analysis of diallel
crosses has been widely used to investigate the
genetical structure which explains a quantitative
trait. This methodology, presented in a series of
papers (Jinks and Hayman, 1953; Hayman, 1954;
and Jinks, 1954), has been reviewed by several
authors (Gilbert, 1958; Nassar, 1965; Feyt, 1976;
Baker, 1978) who criticised the validity of its
assumptions and analysed the consequences of
their failure. These assumptions are: (a) diploid
segregation, (b) no difference between reciprocal
crosses, (c) no non-allelic interaction, (d) no multi-
ple allelism, (e) homozygous parents and (f) genes
independently distributed across the parents.

Let genotypes II, ii and Ii, at the ith locus,
have genotypic values c + d,, c — d, and c + h (d,
0), and be represented by a variable 0, which takes
values 1, —1 and 0, respectively. Let us further
assume that the diallel cross contains n parents
and that k genes control the character of interest.
Then it is easy to see that to obtain the formulae
given by Hayman (1954), section 2.3, the following
equalities

r1 (OriO.i)(OrjO.j)=O, (1.1)

are required, where r is an index for parents and
0, and O are averages across parents. This strong
hypothesis, which is related to assumption (f), has

been criticised by several authors such as Gilbert
(1958) and Feyt (1976). In particular Feyt observed
that having n loci, we need at least 2 parents to
obtain a non-trivial theoretical situation in which
(1.1) is satisfied.

Sokol and Baker (1977) and Baker (1978) state
that (f) will be assured if parents are produced by
random mating followed by nonselective inbreed-
ing. This makes the expected value of the left hand
side of (1.1) to be zero and therefore, the equality
holds for large n, i.e., it is asymptotically true. In
practice, however, a small number of parents is
used in diallel experiments and asymptotic argu-
ments are not reliable. Lack of validity of (1.1)
may induce large biases in the estimates, especially
for small diallels, and is responsible for a great
deal of criticism which arises from simulation
studies (Nassar, 1965; Feyt, 1976).

Working from a population point of view, Hay-
man (1960 and 1963) derived formulae for the
expectations of the classical estimates of D, F, H1
and H2, providing unbiased estimates of the corre-
sponding population parameters. An important
point to be noticed is that these formulae were
obtained assuming that the expectation of (1.1) is
zero, thus overcoming the difficulties mentioned
above.

In this paper, a new theoretical framework for
fixed parent diallel crosses which assumes a prior
distribution on the parameters that determine the
parental genotypes is discussed. The expectations
derived by Hayman (1963) are used as a first step
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to derive new estimates of the genetical com-
ponents. A simulation study comparing the new
estimates with those of Jinks and Hayman and
with Hayman's (1963) estimates is presented. On
each simulated diallel the observed frequencies of
positive and negative homozygotes at each locus
are computed and used to obtain the genetical
components. Mean biases and mean square devi-
ations, are computed. The results show that the
new estimates improve both the classical estimates
and the unbiased ones given by Hayman.

homozygotes at the ith locus be u,. Then, the
arithmetic mean 0, will be w = u, — v where v, =
1—u1.

We are interested in estimating the usual geneti-
cal components,

D= d(1—w)

F = 2 d1hw1(1 — w)

ESTIMATING THE USUAL GENETICAL
COMPONENTS

The statistical model

In the following it is assumed that the parents in
the diallel constitute a fixed set (and not a random
sample from a population), having genotypes rep-
resented by vector parameters

O5=(0,1,...,0k), s=1,...,n.
Our prior knowledge about 0 is expressed by the
following assumptions,

(A) P(O,1=1)=U1, P(051=—1)=V,,
Ui+ Vi=l,

(B) 0,, are independently distributed.

Further, the genotypic contribution to the
phenotype of the rth parent is

flrr = diOri,

and analogously, for the 0. x 0. progeny we have

lrs{di(0ri+0si)+hi(1Ori0si)}. (2.1)

Therefore, adding the environmental contribution
ers to (2.1), the statistical model may be written as

Yrs = 7)rs + er,.

Given the genotypes 0,, the errors er. are indepen-
dently and identically distributed with zero means
and equal variances.

Notice that the assumption (1.1) has been
changed and is now interpreted as meaning
stochastic independence in the prior distribution
of the parameters.

Genetical components

Let the genotype of the rth parent be denoted by
Or (0,,..., 0ri) and let the frequency of positive

H1= h(1—w)
k

H2= h(1—w)2
k

h,(1—w), (2.3)
1=1

and some functions of them, namely ADD, NGR,
FP and RDR, defined as follows,

ADD = (H1/D)112, average degree of domi-
nance,

NGR = h2/H2, number of groups of
genes which control the
character and exhibit
dominance,

FP = H2/4H1, frequency product (uv)
at loci exhibiting domi-
nance,

— (4DH1)112+F ratio of dominant toRDR —
(4DH1)112— F' recessive alleles in all the

parents. (2.4)

We should distinguish these genetical com-
ponents from their analogue obtained from (2.3)
replacing w by W, = U, — V. These new para-
meters, which do not depend on 0, will be denoted

'2 2 D", Hf, H, F" and h". They correspond to the
population genetical components which are con-
sidered under a random model approach.

The estimating procedure
The estimation of the parameters in (2.3) and (2.4)
starts by considering the equations given by Hay-
man (1963),

E(F')= F" —2F"/n
E(H) = Hf+(h2—H)/n
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n2—6n+6 1
2 +—h2. (2.5)n n

Notice that a correction was made in the last
equation. We also need the equations

E(62) = E(mLl —mLo)

______ (n—1)(2n—3)
=1-li —Hi'

n 2n3

(2.6)

(2.7)

where mjc and mLl are the means of the parents
and of the whole diallel, as usual.

In the above expectations the environmental
component er. in (2.2) was not considered. This
will be done in the Environmental Variation
Section.

Further, taking expectations in (2.3) we obtain

(D)= D1'(1_-)

E(H1)= Hf(1 _.)

= H'(1 _)(i _)(i _)

+4Hci(1_--)

E(h) = h" (i _.).
From (2.5), (2.6) and (2.8) we obtain the fol-

lowing estimates

n—iD= VOLO

Further, from (2.7) and (2.9) we obtain

li=2(mLl—mLO). (2.11)

Replacement of (2.10) and (2.11) into (2.4)
provides the remaining estimates.

SIMULATION STUDIES

Simulating according to the prior distribution

Complete diallels having n parents (n = 6, 10 and
15) were simulated using (2.1) and (2.2). The num-
ber of simulated loci was 10 and the additive and
dominance parameters (d1, h,) were taken all equal
to 05 as in Nassar (1965). A Fortran program was
run on a IBM 4331 computer and a random number
generator was used to simulate independent —1
and +1 variables Ori(r= 1,. . . , n; i = 1, . . . , 10).
Three values were considered for the probabilities
U, of O, being +1, namely 025, 0.50 and 075, for
the case of n = 6. For larger diallels, i.e., n = 10

and 15, the probabilities U, were fixed at 050.
One thousand diallels were simulated for each of
the cases studied. Assumptions (a)—(f), where (f)
is given by the expectation of (1.1), are obviously
satisfied.

From each simulated diallel, three sets of esti-
mates were computed: (a) the classical ones (Hay-
man (1954)), henceforth referred to as "JH esti-

(2.8) mates", (b) Hayman's (1963) unbiased estimates
obtained from (2.5) and denoted "HU-estimates",
and (c) the new ones given by (2.10) and (2.11),
and denoted "N estimates".

The performance of the three sets of estimates
.9, was measured through the mean bias and the mean

square deviation from the usual parameters.
To obtain these measures, on each simulated

diallel, the frequencies u, of positive homozygotes
at the ith locus (i =1. . . , 10) were computed on
the n simulated parents. Then the usual genetical
parameters (2.3) and (2.4) were obtained. The esti-
mates were computed on each diallel and their
mean deviation (MD), or bias, and mean square
deviation (MSD) from the usual parameters were

n—1\ n—i
n =(vOLO_4wOLO1+4v1L1—)

—4(VOLI —+(mLl —
mLo))

L
2

n—I)
fl2=4(V1L1— VOL1)

n(n—2)

12— mLo)

and

(2.10)

and

n
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obtained as follows:

MD=— (i—r)N1

MSD= (_)2
where r represents a parameter associated to the
jth diallel and i its estimate. N= 1000 is the
number of simulated diallels. The means of the
usual parameters simulated were also computed.

The results are given in tables 1, 2 and 3.
Jhe statistics Mp and MSD are estimates of

E(D—D) and (D—D)2, respectively, i.e., the
average bias and the average quadratic loss (or
Bayesian risk).

Simulating a random sample of diallels

Since the relative performances of the three sets
of estimates observed through the simulation study

reported in the previous section depend on the
prior distribution, they are of little interest for those
who reject Bayesian arguments.

To overcome this difficulty a random sample
of one thousand diallels from the population of

(3.1) all possible 6 x 6 and lOx 10 diallels was simulated.
The number of loci and the values assumed by (di,
h) were the same as in the previous section.

Mean biases and mean square deviations were
computed following (3.1) and are reported in table
4. These figures do not depend on the prior distri-
bution and are useful to compare the estimates
from a frequentist or classical point of view.

Comparing the performance of the estimates

The results in tables 2 to 4 show a better perform-
ance of the N estimates as compared with JH and
HU estimates. In particular, considerable improve-
ment is obtained when estimating D, H1, H2, ADD
and NGR. Some improvement is also observed in

Table! Mean values of usual genetical components according to the number of parents (n) and the probability (U) of positive
homozygote at a single locus

n U D H1 H2 F h ADD NGR FP RDR

025 1556 1556 1254 —1041 3113 1000 7771 0200 0501
6 050 2081 2081 1845 —0005 4162 1001 9419 0221 1019

075 1557 1557 1259 1027 3115 1001 7759 0201 2089
10 O50 2249 2249 2067 0014 4497 1001 9802 0230 1020
15 050 2•331 2331 2195 0011 4663 1001 9920 0235 1015

Table 2 Mean biases of three sets of estimates from the usual genetical components according to the number of parents (n) and
the probability of positive homozygote at a single locus (U)

n U Estimate* D H1 H2 F ADD NGR FP** RDR

6 025 JH
HU
N

038
038
005

242
119

—003

235
—054

0O2

—027
—092
—005

064
036
012

—501
2308
079

2578
—136.73

073

014
—005

003
6 050 JH

HU
N

0•49
049
0•06

415
202
000

411
004
0•00

—003
—004
—0'02

0•83
04S
015

—645
134
149

1748
—10725

—059

000
006
004

6 075 JH
HU
N

027
027

—003

240
116
000

234
—052

000

020
081
000

067
038
013

—497
1749
103

2583
—13485

082

—045
087
002

10 050 JH
HU
N

031
03l
005

253
081
003

251
081
003

002
003
002

0•48
019
008

—532
—2'51

030

990
481
318

000
005
002

15 050 JH
HU
N

022
022
0.05

167
041
0'Ol

166
048
001

001
001
001

032
009
004

—4•24
—164

0.15

548
883

—012

0.00
003
001

* JH =Jinks Hayman, HU = Hayman's unbiased, N = new estimates.
** Mean square deviations x i03.



COMPONENTS IN DIALLEL CROSSES 351

Table 3 Mean square deviations of three sets of estimates from the usual genetical components according to the number of parents
(n) and the probability of positive homozygote at a single locus (U)

n U Estimate* D H1 H2 F ADD NGR FP** RDR

6 025 JH
HU
N

155
155
0•98

678
196
032

629
062
020

093
283
059

080
039
018

2616
36028t

1025

083
2094
030

004
004
003

6 050 JH
HU
N

2'87
287
183

18•19
500
058

1774
047
051

053
130
037

123
0'61
028

4198
42978
2316

039
1233
021

004
0•16
0i0

6 075 JH
I-LU

N

132
132
086

673
192
033

628
062
021

080
241
053

077
037
017

2592
36173

1287

085
2048
034

037
756
030

10 050 JH
HU
N

1•48
148
1•12

666
095
023

657
096
021

022
036
018

039
015
010

28•58
810
4•77

0•13
018
007

0'02
005
004

15 050 JH
HU
N

0•86
086
070

291
028
009

288
036
010

010
014
010

017
006
005

1816
385
199

004
013
003

001
0•02
002

* ill =Jinks Hayman, HU = Hayman's unbiased, N = new estimates.
** Mean square deviations x i03.
t Mean square deviationsx iO.

Table 4 Mean biases and mean square deviations of three sets of estimates from the usual genetical components computed from
a sample of one thousand diallels, according to the number of parents (n)

n Estimate* D

Mean Biases

F ADD NGR FP** RDRH1 H2

6 JH 035 417 412 —004 089 —644 1710 —001

HU 035 204 006 —005 053 3.33 —011 005
N —006 002 002 —003 018 144 —077 002

10 JH 020 251 248 —003 052 —531 953 000
HU 020 080 0•78 —004 021 —243 337 002
N —005 002 001 —003 010 039 058 001

n Estimate* D

Mean Square Deviations

F ADD NGR FP5' RDRH1 H2

6 JH 242 1840 1794 0•56 138 4186 036 004
HU 242 512 051 137 069 85830 1237 016
N 160 058 051 038 031 2706 022 010

10 JH 130 655 641 021 044 2837 012 002
HU 130 090 089 035 016 773 020 005
N 102 021 020 017 011 495 008 003

* Jinks Hayman's, HU = Hayman's unbiased, N = new estimates.
**

Figures x i0.

the estimation of F and FP. The relative advantage
of using N estimates diminishes as the size of the
diallel increases.

JH's estimates show large positive biases in the
estimation of ADD, attaining a maximum of 85
per cent of the parameter value when n =6 and

U = 05 (table 2). This overestimation of ADD was
also reported by other authors (see Feyt, 1976 and
Baker, 1978). In addition, large negative biases
were observed for the JH's estimates of NGR,
attaining 70 per cent of the parameter values,
approximately. Since the parameter NGR = h2/H2
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under-evaluates the number of genes (see table 1),
negative biases from NGR increase the overall
bias from the number of genes.

Hayman's (1963) unbiased estimates (from
(2.5)) almost always improve the JH estimates in
the case of large diallels, but are not reliable in
small diallels. In particular they fail in the estima-
tion of NGR, FP and RDR.

The new estimate proposed for NGR overesti-
mates the parameter. A correction factor (n —1)/n,
where n is the number of parents in the diallel, is
recommended for small diallels. In the 6 x 6 case,
a reduction of 60 per cent was observed in the
mean square deviation when using this correction.

ENVIRONMENTAL VARIATION

Wewill now consider the contributions of environ-
ment to phenotype as given in (2.2). The variance
of e, is denoted with the letter E, as usual.

In this situation the following expectations may
be obtained:

E(V0L0)=D"+E

D" E

4 4 n /
+L_(hP2_H

i/n+1
)+-(—-)E4n 2 n /

(V01) =!D_! F1'+! (2H4 4\ n / 4\ n /
1 (n—2)(n—3) H+-—E
4 2 2n

E(32) = E(mLI —
mLO)

1 In—i'2 (n—i)2h2+ H
1 (n—1)(2n—3) 'n—i"

H' + ( —i-- ) F.
2 n3 \fl /

(4.1)

Replacing E in (4.1) by its estimate E, usually
obtained from the mean square error in a ran-
domised block experiment, solving the system of
equations, and using the correction factors given

(
n—i" n—i

= VOLO—4WOLO1+4V1L1)n—2i n
/ n—i

2)

1

—4(VoLl————+(mLl—mLO) i

-3 E
n

(n — 1)2H2 = 4(V1LI — VOL1)
n(n—2)

— 4( mLl — mLo) —2E

Further notice that no environmental correc-
tion term is needed in (2.il).

The above treatment of environmental vari-
ation, similar to Hayman's (1954), is useful for
diallel experiments arranged in balanced com-
pletely randomised (CR) or randomised complete
blocks (CB) designs. In fact, Yr in (2.1) may be
written as

or
Yrsi = Xrs + ers, (CR)

Yrsi = Xrs + f3 + ersi (CB) (4.2)

where 1 = 1, . . . , L stand for replicates or blocks,
and Xrs and 13k represent the genotypic and block
contribution, respectively. Assuming indepen-
dence among all terms in (4.2) we may compute
the expectations in (4.1) quite easily. For example,
for VOLO we have:

E(V0Lo)= (-y.)2n—i

= D+(-_!---(eii_e.i)2)i n—i

= D+ E,

where y denotes y in (4.2), as usual.

DISCUSSION

Most breeders perform diallel cross experiments
using a highly selected collection of parents. In
this case, the fixed, non-random model of Jinks

by (2.8) we obtain:
... n—i

n

= (2 VOLO —4 WOLO1 — 2E--)--
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and Hayman is appropriate if the assumptions
listed in the Introduction are met.

One of these assumptions, namely the one
which states that genes are independently dis-
tributed across the parents, has been most criticised
(Gilbert, 1958; Feyt, 1976; and Baker, 1978). In
its simplest formulation, this assumption may be
written as in (1.1), but having n loci we need at
least 2' parents to obtain a non-trivial theoretical
situation in which (1.1) is satisfied (Feyt, 1976).

This difficulty may be overcome if we adopt a
statistical Bayesian approach to the problem in
relation to the parameters 0 which determine the
parental genotype. This approach is perfectly com-
patible with the fixed parent model and enables
us to interpret the independence assumption (f)
as a requisite in the prior distribution of 0.

The expectations in Hayman (1963) fit perfectly
within this perspective and were used as a first step
in the derivation of the new estimates. As a second
step, equations (2.9) were used to modify the
estimates to attain average-unbiasedness, which
means, for example, that

a property of interest in the fixed model approach.
On the other hand, notice that Hayman's (1960,
1963) unbiased estimates are unbiased for the
population parameters (D", Hf,...), a property
of interest in the random model situation.

The simulation study evaluates the average
biases and the average quadratic losses and shows
that the new estimates perform better than their
competitors from both a Bayesian and frequentist
or classical point of view.

Finally, notice that the random sample of dial-
lels considered in the section "Simulating a ran-
dom sample of diallels" was taken from the whole

population of diallels. This means that assumption
(f) or (1.1) was not required. Now, if we compare
the performance of the estimates in tables 2 and
3 (take U =0.50) with the results in table 4, we
conclude that the estimates were quite robust
against departures from this assumption, a crucial
point against those who criticise Jinks-Hayman's
methodology.
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