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Genetic models are presented for the analysis of quantitatively inherited characters which are expressed in the triploid
endosperm of plants. These models are appropriate for various populations derived from crosses between two
homozygous parents where, as a consequence, in the reference population the gene frequencies are half at all
segregating loci. The first model, which allows for the estimation of genotypic values, including additive, dominance
and first order epistatic effects, can be used with data from the two parental lines, two reciprocal F1 populations, the
F2 and the four backcross populations using the F1 as one of the parents. The model was not extended to those four
other backcrosses involving the FIR populations as one of the parents. A second model is presented for the estimation
of genetic variance components, including the variances of first order epistatic effects. A third model is described for
the estimation of genetic variance components in nested designs which arise in pedigree breeding programs using self
fertilization. Data from appropriate experiments are used to illustrate the use of the models.

INTRODUCTION

Mathematical models for the estimation of
genotypic values of quantitatively inherited
characters have been developed by Mather (1949),
Mather and Jinks (1971), Kempthorne (1957),
Cockerham (1956, 1963) and others. Most of these
models were developed for populations of diploid
organisms. An extension of these models to poiy-
ploid and haploid organisms was considered by
Dessureaux (1963) and Mather and Jinks (1971),
but without consideration of non-allelic interac-
tions and only for cases where segregation is not
affected by linkage or double reduction. A triploid
model for the analysis of the quantitative genetics
of a-amylase in wheat endosperm was suggested
by Gale (1976), but his model only involves main
effects. In this paper we use a scale different from
that of Gale (1976) and we also include interaction
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components for characters expressed in triploid
tissues, such as the endosperm of otherwise diploid
plant individuals. We consider this to be an impor-
tant extension of the theory because many of the
economically valuable characters in plants express
themselves in the endosperm of the seed; the model
will therefore assist geneticists and plant breeders
to estimate genetic parameters: both means and
variances of these characters.

Throughout the paper we will make the follow-
ing assumptions: (a) regular diploid and solely
Mendelian inheritance, (b) no environmental cor-
relations among relatives, (c) no linkages (d) the
progenies or relatives are considered to be random
members of their particular generation of self fer-
tilization or crossing. When using models with
interaction parameters included it is necessary to
assume (e) that in segregating loci which affect the
particular character studied, all alleles positively
influencing the character are located in one of the
parent inbreds, or, in other words using the ter-
minology introduced by Mather and Jinks (1971),
all the increasing alleles for the genes are associ-
ated in one of the parents. Although this paper
offers an extension to the model of Mather and
Jinks (1971), the notation of "a" for additive and
"d" for dominance effects, as originally introduced
by Fisher (1918), is used.
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THE ANALYSIS OF MEANS

Main effect components: additive model
with dominance

The triploid endosperm of members of the grass
family arises from the fusion of two identical
gametes from the female parent with one gamete
of the male parent. If we consider two alleles, B
and b, at a given locus, the endosperm can have
one of four possible genotypes: BBB, BBb, Bbb
and bbb. Four parameters will be necessary to
describe the genotypic values of the above four
genotypes. These are m, the mean, a which
measures the average effect of a single B allele,
d1, measuring the deviation of the phenotype of
the BBb individual from its expected value without
dominance, and d2 measuring the deviation of the
phenotype of the Bbb individuals from their expec-
ted value without dominance. Because the model
assumes gene frequencies of O5 for all segregating
loci the decomposition of the genotypic value as
presented here is valid only for cases where the
populations under study involve crosses between
two pure lines (P1 and P2), resulting in an F1
population and where subsequent populations are
obtained either by selfing or by backcrossing to
either the parental or F1 generations. The model
will allow for n loci and we restrict consideration
to first order interactions of non-allelic gene-effects
(epistasis).

The genetic effects are scaled as in fig. 1., in
which m is the midpoint between the two triple
homozygote parents BBB and bbb, and all the
other parameters are as described earlier. The mid-
point should not be confused with m which is the
notation for the mean of the reference population.
In the absence of dominance the value of the BBB
genotype would be m+3a/2, the values of BBb,
Bbb and bbb would respectively be m + a/2, m —
a/2 and m—3a/2. We need to consider two
different cases of dominance, where the heterozy-
gotes BBb and Bbb deviate from their respective
genotypic values under the assumption of "no
dominance" by increments (or decrements) of d1
and d2. The actual values for BBb and Bbb would,

—3a
2

therefore be m + a/2+ d1 and m — a/2+ d2 respec-
tively.

Using the two diploid parents P1 (BB) and P2
(bb) one may produce two different F1 populations
depending on which parent is being used as a
female parent. We shall designate the cross P1 x P2
as F1, (by convention the first mentioned one is
the female) and the reciprocal, P2 x P1 as FIR, then
for the B — b locus the F1 will have the genotype
BBb and the FiR the genotype Bbb in the endo-
sperm of the seeds produced by the respective
female parent; it has to be remembered that the
seed produced by any plant belongs to the next
generation of populations. If n loci affect a par-
ticular quantitative character, we define [a] as a,
where a is summed over all loci, i taking all the
values from 1 to n. Similarly [d1] and {d2] are
designated as summations over all loci of the
individual d1 and d2 values respectively. Thus the
actual genotypic values of F1 and FIR endosperm
will be m+[a]/2+[d1] and m—[a]/2+[d2]
respectively.

In an F2 population seed, which has been
obtained by selfing either F1 or FrR plants, one
would expect a segregation of BBB to BBb to
Bbb to bbb endosperm, considering the B —b
locus only. Summed over all loci the expected
genotypic value of an F2 plant will thus be m +
[d1]/4+[d2J/4, because there will be an equal
number of positive and negative [a] values cancel-
ing each other.

There are eight types of backcross generations
possible in the endosperm; however we shall con-
sider only those four which involve F1 (and not
FiR). Each backcross generation will have different
expected values. We designate the F1 x P1 cross as
BC1, the P1XF1 as BC1R, the F1xP2 as BC2 and
the P2 x F1 as BC2R. For the B —b locus the endo-
sperm of the BC1 populations will on the average
consist of BBB and Bbb individuals with the
following mean genotypic value:

[(m +3a/2)+(m —a/2+ d2)]= m + a/2+ d2/2.
Similarly the means of the other three backcross
populations will be m+a+d1/2 for the BCIR,

BBB
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Figure! Additive (a) and dominance (d1) (d2) genetic parameters. The four possible genotypes at a single locus B—b in triploid
tissue. Deviations are scales in respect to the midpoint (m) between the two parents P1 and P2 and in respect to the additive
effect (a) in a single allele B.
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m—a/2+d1/2 for the BC2 and m—a+d2/2 for
the BC2R.

An overall summary of the expected frequen-
cies and population means for the B — b locus and
the expected mean genotypic values summing over
all the loci is found in tables 1 and 3.

Table 1 Relative frequencies of genotypes with respect to a
locus. B — b of triploid tissues in populations derived from
a cross between two homozygous lines, considering main
effects only

Genotype BBB BBb Bbb bbb

Genotypic
value 3a/2 a/2+d1 —a/2+d2 —3a/2

Population
BC4 4 0 4 0
BC4 4 4 0 0
BC2 0 4 0 4
BC2R 0 0 2 4
F1 0 1 0 0
F1 0 0 1 0
12 1 1 1 1

2 4 4 4 4

P1 1 0 0 0
0 0 0 1

Table 2 The coefficients of main and interaction effects for
two loci, B — b, and G — g in triploid tissues

m ab ag dlb dig d2g d2g aa ad dd

BBBGGG 1 1 1 0 0 0 0 1 0 0
BBBGGg 1 1 0 0 1 0 0 0 1 0
BBBGgg 1 1 00 0 0 1 0 10
BBBggg 1 1—10 0 0 0 —1 00
BBbGGG1 0 11 0 0 0 0 10
BBbGGg 1 0 0 1 1 0 0 0 0 1
BBbGgg 1 0 0 1 0 0 1 0 0 1
BBbggg 1 0 —1 1 0 0 0 0 —1 0
BbbGGG1 0 10 0 1 0 0 10
BbbGGg 1 0 0 0 1 1 0 0 0 1
BbbGgg 1 0 00 0 1 1 0 01
Bbbggg 1 0 —1 0 0 1 0 0 —1 0
bbbGGG 1 —1 1 0 0 0 0 —1 0 0
bbbGGg 1 —1 0 0 1 0 0 0 —1 0
bbbGgg 1 —1 0 0 0 0 1 0 —1 0
bbbggg 1 —1 —1 0 0 0 0 1 0 0

Interaction components: model with epistasis

The model may include non-allelic interaction
(epistasis) components. Considering only two loci,
B — b and G — g, there are 16 possible triploid
genotypes. These are listed, together with their
genotypic components in table 2. The columns in
this table represent the mean (m), the additive
effects at each locus (ab and ag), the dominance

Table 3 Coefficients of expected genetic parameters for triploid
tissues in populations derived from two homozygous lines

Population
Gen
m

etic parameter
[a] [d1] [d2J [aa] [ad] [dd]

BC4 1 4 0 1 t
4

1 1

BCIR
BC2

1

1

1 4
1 1—

0
0

'
1—

BC2R
F1

1

1

1 0
4 1 0 0

—
0 1

FIR 1 0 1 0 0 1

F2 1 0 4 0 0 4
P1 1 4 0 0 1 0 0
2 —4 0 0 1 0 0

effects (dlb, d1g, d2b and d2g), the combined addi-
tive by additive (aa), additive by dominance (ad)
and dominance by dominance (dd) interactions.
These can further be grouped representing the
genotypic value (G) as

G= m+[a]+[d1]+[d2]+[aa]+{ad]+[dd]
where the square brackets of the interaction com-
ponents mean sums of similar effects over all n (n —

1)12 possible pairs of loci.
We shall consider only the nine populations

described before: P1, P2, F1, FiR, F2 and the four
different backcross ones. The expected values for
these are listed in table 3. The reader should be
reminded, that the additive value is not scaled from
the midpoint as in Mather and Jinks (1971). There-
fore the interaction components cannot be derived
simply by multiplying the coefficients of the main
effect parameters, as can be done for a diploid
model. Also dominance effects are deviations from
the additive effects (under the assumption of no
dominance) rather than deviations from the mid-
point. In fact the midpoint in this model does not
serve much useful purpose other than a com-
parison with a diploid model.

The seven parameters of the model can be
estimated from the nine observed means by the
equating the observed values with the expected
ones. Thus a mean value for the observed character
for each of the nine populations is available
together with their variances.

It is, of course, customary to first test a model
without epistasis, in this case using only the first
four columns of the X matrix. A significant depar-
ture from a good fit as measured by the x2 test,
would lead to further test, involving one or more
of the epistasis parameters of the X matrix. It
should be pointed out that occasionally a good fit
of the "main effects only" model can be obtained
by a suitable transformation. Before continuing to
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the extended model, in case of a significant chi-
square value it is prudent to carry out the same
test on the transformed data. It should also be
remembered that the [a] and [di] are sums of the
signed a, and d, over all the loci, and these may
differ greatly from locus to locus.

The estimation procedure is that of the stan-
dard weighted least squares as described by Mather
and Jinks (1971).

THE ANALYSIS OF VARIANCES

Since we are dealing here with a discrete distribu-
tion, the variance of the different populations can
be derived from

pX —(
where p, refer to the relative proportion of a par-
ticular genotype in the population, and X1, in this
case, to the appropriate genotypic components of
those genotypes (as in table 1). We will only con-
sider the main effect components a, and d. As an
example for the BC1 generation the population
will consist of BBB and Bbb endosperm with
genotypic values of 3a/2 and —a/2+d2 respec-
tively, with the mean of the population being a/2+
d2/2. Therefore the genotypic variance, V(Bcl), can
be calculated as

V(Bcl) =(3a/2)2+(—a/2+ d2)2 — (a/2+ d2/2)2
= a2+ d—ad2.

The genotypic components of the variance for
the populations BC1R, BC2, BC2R and F2 can be
calculated in a similar manner.

We define A=a, D1—d, D2=d,
AD1 = a,d11, AD2= ad2, and D1D2= d1d2.
Using these we can now construct the expected
variance components for triploid systems as in
table 4. The method of estimation is that of Hay-
man (1960).

Table4 Coefficients of expected genetic variance components
for triploid tissues in populations derived from two
homozygous lines

Population
Gene
A

tic varia
D1

nce corn
D2

ponents
AD, AD2 D,D2

BC1 1 0 0 —1 0
B"IR 1

4
1
4 2

BC2 1 0 1 0 0
B 2R
2

4
5
4

3
16

I
4
3

11
1
4

I
2
14 15

Nested designs of self fertilisation

Inbred populations derived from F2 individual
plants by selfing can be subdivided into lines fol-
lowing a nested scheme. This introduces various
additional observational components of variance.
Without dominance the simplest way to represent
this situation can be represented by the equation

VT = Vb + V,

where V-1- is the total genetic variance and equals
(1 + F) VA, Vb is the between lines component and
equals 2FVA, and V is the within lines component
and equals (1 — F) Va, where VA is the additive
genetic variance and F is the coefficient of inbreed-
ing. Of course when lines are completely inbred,
(F = 1), all genetic variation comes from the vari-
ation among lines and none from within lines.

If pedigrees are maintained during the course
of inbreeding it can also be seen that various
degrees of sublines can be defined according to
which common ancestor one refers to as the
originator of the subline. (See fig. 2.). In the F3
generation (since the only ancestors one may refer
to must come from the noninbred F2 generation)
there is only one kind of line possible: that which
originates with the parent F2, and, as a con-
sequence, there are only two kinds of possible
variances: those calculated from F3 family means
and the average "within families" mean. We shall
follow the notation of Mather and Jinks (1971).
In their notation V1F3 is the among families vari-
ance and V2F3 the within families variance. There
is only one possible parent-offspring covariance
i.e., the covariance between F2 individuals and the
family means of their own offspring, denoted by

F23
In the F4 generation it is possible to discern

between two kinds of sublines, those that can be
traced back to a single F2 grandparent, the variance
of the means of these lines is denoted as VIF4,
and those that go back only to the F3 parents; the
variance of the means of these lines are denoted
as V2F4. The average within families variance is
now denoted as V3F4. There are now two kinds of
covariances possible: those between F3 family
means and F4 "group" means, where a group is a
set of F4 plants originating from the same F2 grand-
parent, denoted as W1F34, and that between F3
individuals and the means of their offspring
families in the F4 generation, these are denoted as
W2F34. In a similar manner in the F5 generation
one could calculate four types of variances and
three different covariances, in the F6 five variances
and four covariances etc. In this paper we shall
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Figure 2 Diagrammatic representation of a nested design arising from selfing. Individuals are represented by 0's, all individuals
under a broken line are families.

develop these variances only up to the F4 gener-
ation. The covariances can be calculated from the
formula

puxiy'->pix,pjyj.
where p, is the joint probability of the occurrence
of X, with Y and X and Y, are (in this case) the
appropriate genotypic values. These same for-
mulae can, of course, be used to calculate variances
with X1 = Y.

We shall first calculate VIF3, the variance of
F3 family means which come from individual F2
plants. The expected proportion of the genotypes
will be each of BBB, BBb, Bbb and bbb. The
mean genotypic value of these populations is
expected to be (d1+d2)/8. Therefore:

VIF3 = (3a/2)2+(d1/4+ d2/4)2

+(—3a/2)2 — (d1/8 + d2/8)2
_9 2 112 1.12 1,.—8a T6441m64U232U1U2.

The within family variance, V2F3 is expected to be
(1/2)(VF2), thus:

, 5 2323.j2 1 1 A 1A.I2F3 — 8a 32U1 32u2—8Qu1 —8au2—161u2.

The covariance between the means of F3 families
and their F2 parents, W1F23, is calculated as
follows:

WIF2I =(3a/2)2+(a/2— d1)(d1/4+ d2/4)

+(—a/2+ d)(d1/4+ d2/4)
+(—3a/2)2 — (d1/4+ d2/4)(d1/8 + d2/8)

=a2+d+hd+ 1/16d1d2.
Similar derivations can be obtained for VIF4,
V2F4, V3F4, W!F34 and W2F34. Summing over all
loci the expectations of genetic variance com-
ponents can be obtained, these are listed in table 5.

Table 5 CoeffIcients of expected genetic variance components
under selfing for triploid tissues

Variance or
Covariance A D1 D2 AD1 AD2 D1D2

F2 V1F2 1 16 16
I
4

1
4

1
5

F3 V1F3
9
5

1
65

1 0 0 12
v2F3 5 32 32 5

1S 1
16

%4J1F23 5
I

32
1 0 0 '

16

F4 V1F4 6
v2F4 16
v3F4 16
w1F34 5
w2F34 16

255

326

65

155

65

I
336I
133
3

54
I

115

64

0
0
1
16

0
0

0
0
I

T6
0
0

'
133

54
I

32

64

32

FITTING DATA TO THE MODELS

The following data come from Lance (1984). Two
homozygous lines of six-rowed barley (Hordeum
vulgare L.), one with high the other with low
p-glucan content were used to obtain the nine
different populations. They were derived from
crosses involving P1, P2 and F1 generations, as
described earlier in this paper. /3-glucan is a
chemical compound which occurs in the triploid
endosperm tissue of the barley seed, which in turn
belongs to the progeny generation of the mother
plant. Replicated lots of seeds were assayed for
total /3-glucan content, the means expressed as
percent of dry weight and adjusted for daily vari-
ations in the assaying process, together with their
variances are listed in table 6. The table also
contains the number of seeds assayed in each
population. The difference in average f3-glucan
percentage between the two parent lines was 2.2 13
per cent which is more than half of the average
percentage of the low (P2) line. The mean percen-
tage of all the other populations was intermediate
between the two parent lines. Both parent lines
had significantly different means from any other
population in the study. Only the two (reciprocal)

0

a

0

0 0 0

0 F2

0 0 F3
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Table 6 Average f3-glucan percentage values for the nine
experimental populations together with the variances of
these means and the sizes of the samples. Note: Two means
followed by the same letters are not significantly different
at the 5% level

Population Mean
Variance
of mean

Sample
size

BC1 5657b 00036 60
BCIR
BC2

5500b
4593f

0•0039
00036

60
59

BC2R 4826e 00037 59
F1 5143cd 00037 60

FiR 5308c 00035 60
F2 5129d 00015 160

P1 6344a 00055 39
P2 4131g 00060 40

F1 generations, the F1 and F2 generations and the
BC1 and BCIR had means which did not differ
significantly. The estimates of the genotypic effects
for both the four parameter (main effects only)
and the seven parameter models (main effects and
interactions) are listed in table 7. The main effects

Table 7 Estimates of the genetic parameters of /3-glucan per-
centage in barley together with their standard errors using
the triploid model

Estimate
paramet

d
er (b)

Four parameter
model

Seven parameter
model

m 5161±0041 5.178±0.203*
[a] 0670±0077 0.738±0.036*
[d1] —0442±0077 —0731±0507
[d2] 0466±0•077 0•246±0•507
[aa] 0'059±0196
[ad]

[dd]
x25 df= 1643

0•289±0'318
X22 df= 2•71

* Denotes the estimate to be significantly different from zero
using z statistics.

only model was fitted first, giving a significant
(x2 = 16•43, 5 df) lack of fit at the 5 per cent level
of significance. Various transformations did not
improve the fit. The seven parameter model, on
the other hand, gave an excellent fit (x2= 271,
2 df). of the parameters estimated the additive
effect [a] and the additive by dominance [ad]
effect were significantly different from zero at the
5 per cent level of significance. To calculate the
significance the z values were calculated as (0—
E)/SE, where 0 is the observed value, E the
expected one and SE the standard error of the
observed parameter.

Table 8 lists the estimates of the variance com-
ponents together with their standard errors. The
standard errors of the estimates (as is usual in these
experiments) are too large, except for E, the
environmental variance. It is somewhat reassuring

Table 8 Genetic variance component estimates from the nine
experimental populations together with the standard errors
of these estimates (obtained as the square roots of the
diagonal elements of the variance-covariance matrix
(Z'Z)'s2, and where s2=y'y—v'X'y

Variance component Estimate
Standard error
of estimate

A 01434 0523
D1 00208 1368

D2 —01006 1369
AD1 —00986 0296
AD2 00179 0295
E 01372 0071

that the two largest variances are the additive and
the environmental ones. However, the absolute
values of the negatively estimated variance com-
ponents are somewhat too large for comfort. This
makes the estimation or heritabilities from the nine
populations somewhat difficult. Leaving the nega-
tive values intact would make the estimates of
heritability larger than 1 (119). Assuming that the
negative values indicate zero variances the herita-
bility (in the narrow sense) would be O45. Equat-
ing all non-additive variances with zero (since the
non-negative ones are very small) will yield a
heritability estimate of O51. Using F3 and F4 data,
and calculating h by using regression of F4 family
means on parent F3 family means will yield a
regression coefficient of 073, which, being the
regression of offspring on midparent is a direct
estimate of h2. Using the phenotypic variance esti-
mates of the F3 (V1F3) and F4 (V2F4), calculating
the phenotypic covariance estimates from the
regression (W1F34), and combining all the non-
additive components into a single value, the esti-
mate of the additive genetic variance [a] is 01216,
not very different from the estimate from the nine
other experimental populations. From the same
data the environmental variance estimate is 00441.
Using these values heritability from the F3 popula-
tion is estimated to be 065 and from the F4 data
073. Commenting on the four different estimates
of heritability (ranging from 045 to 0.73) one
could conclude that there is strong evidence for a
reasonabl3' high heritability of glucan percentage
in barley seed.
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