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Biochemical heterozygosity and
phenotypic variability of polygenic traits
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Using the theory of additive genetic variability of a polygenic trait, it is shown than an individual's heterozygosity at
the loci governing the trait cannot be determined accurately from observations on phenotypes alone. Furthermore, the
negative association between heterozygosity and phenotypic variance, and a positive correlation of the frequency of the
modal class of a phenotypic trait and the extent of heterozygosity can be explained by additive allelic effects. It is
argued that while the number of heterozygous loci in an individual may not be a good indicator of the individual's
genomic heterozygosity, there is evidence that some of the biochemical loci may reflect genetic variation at the loci
controlling phenotypic polymorphism. Thus the observed relationship between biochemical heterozygosity and
phenotypic variance may not constitute hard evidence of heterosis, overdominance, or associative overdominance.

INTRODUCTION

Allozymic variations in natural populations,
studied over the past two decades, have now con-
vincingly established that genetic variation is gen-
erally ubiquitous in almost all taxa. Recent
molecular data showing genic variations at the
DNA level have strengthened this view (Nei, 1987).
Yet, the controversy regarding the mechanistic
explanations for the production and maintainance
of genetic polymorphism is still unresolved, since
direct searches for selection at any individual locus
have produced ambiguous results at best. More
recently, therefore, attempts have been made to
relate the heterozygosity levels detected by multi-
ple loci with variabilities in morphological or
fitness related traits in order to test heterotic effects
of the loci studied. Critical appraisals of the use
of allozyme data in this regard have been made in
recent reviews of Mitton and Grant (1984) and
Zouros and Foltz (1987). These reviews and their
cited references indicate that the efforts to relate
allozymic heterozygosity with phenotypic variabil-
ity do not always produce positive results. Yet, in
many organisms, from plants to human, associ-
ations between these two parameters suggest that
heterotic effects may be detectable by studying
interactions of multiple loci together. The concept
of developmental homeostasis has also been

invoked to explain the observation of positive
associations between the heterozygosity and the
lack of phenotypic variability (see e.g., the referen-
ces cited in the above two reviews, and Livshits
and Kobyliansky, 1985).

The main features of the positive results of such
association studies may be summarised into three
observations. (a) When heterozygosity is measured
by the number of loci at which an individual is
heterozygous, increased heterozygosity is often
associated with a decreased phenotypic variability.
(b) The frequency of modal phenotypes is posi-
tively correlated with the heterozygosity levels of
individuals. (c) Parental fitness is positively associ-
ated with the expected degree of heterozygosity
among offspring. None of these findings are,
however, universal, since exceptions are found in
repeated studies in the same population (Pierce
and Mitton, 1982), and in studies involving popu-
lations of different evolutionary origin (e.g.,
Gottlieb, 1977; Handford, 1980; Knowles and
Mitton, 1980; Knowles and Grant, 1981; Mitton
et al., 1981; Chakraborty et a!., 1986).

In spite of these discordant results, the above
features of association of enzymic heterozygosity
with phenotypic variability demand satisfactory
mechanistic explanation. The interpretation of
selective differentials among individuals involve
the assumption that the morphological traits used
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in determining phenotypic variability are geneti-
cally controlled, and the biochemical loci
employed reflect genetic variation at the loci con-
trolling such traits. It is true that genetic factors
are involved in morphological variation, and
fitness may be genetically controlled. Yet, the role
of non-genetic modifiers in determining
phenotypes of such traits cannot be totally ignored.
Furthermore, the task is more complicated, since
the number and nature of genetic loci involved in
morphological or fitness related traits are not
known, and their relationships with structural bio-
chemical loci are not clear.

The purpose of this paper is to show that the
classification of individuals into different heterozy-
gosity classes by phenotypes of a polygenic trait
is quite error prone, even if the trait is under
complete genetic control. It is also shown that the
increased frequency of modal phenotypes in highly
heterozygous individuals (and the consequent
decrease of phenotypic variability in them) is a
direct consequence of additivity of allelic effects
of a polygenic trait. Lastly, the question of inter-
dependence of heterozygosity at biochemical and
phenotypic level is addressed by reviewing the
theory of predictability of genomic heterozygosity
using electrophoretic markers, in view of the recent
comments of Zouros and Foltz (1987) and Smouse
(1986).

DISTRIBUTION OF HETEROZYGOSITY BY
PHENOTYPE CLASSES

In relation to the studies of morphological vari-
ation and the heterozygous nature of individuals,
it is common to identify the heterozygous status
of individuals by their phenotypic scores for a
heritable polygenic trait (see e.g., Livshits and
Kobyliansky, 1984; 1985; Kobyliansky and
Livshits, 1985). This is based on the supposition
that the phenotypic value of a morphological trait
is determined by polygenic effects of the loci
controlling the trait, and the allelic effects are
additive. Nevertheless, there has been no attempt
to check this analytically. To address this question,
let us consider a quantitative trait controlled by n
loci, at each of which there are two segregating
alleles (say, A, and B, for the ith locus; i =
1,2,..., n). For simplicity, let us assume that the
allelic effects are all additive. Without loss of gen-
erality we can assume that the allelic affects of A
is one and the effect of B, is zero, for all i
1, 2,..., n. We shall further assume that the allele
frequencies at the ith locus are p (for the allele

A) and q, (for the allele B), where q =1 —p1. The
heterozygosity for each individual is measured by
the number of heterozygous loci, if there are
genotypic scoring techniques available for these
loci. Let Y denote the number of heterozygous
loci in a random individual, and X denote the
genotypic value of the individual. We can write X
and Y as

and
x=xI+x2+. . .+xn

Y=Y1+Y2+...+Yn,

(1 a)

(ib)
where the bivariate distribution of X, and 1', is
given by

X1 Y, Genotype Probability

2 0 AA p
1 1 A,B1 2pq1
0 0 B.B1 q

Under the assumption that the loci are indepen-
dently segregating in the population, the joint dis-
tribution of (X, Y) can be evaluated by the bivari-
ate probability generating function method (Feller,
1950); i.e., the probability that X = r and Y= k is
given by

Prob(X=r, Y=k)

where

= Coefficient of ss in G(s1, s2),

G(s1, s2) = H (q+2pq1s1s2+ps), (2)

for r = 0, 1,2, . . . , 2n; k 0, 1,2,..., n, and s1, s2
are two arbitrary variables taking values between
—1 and 1.

Note that the marginal distributions of X and
Y can be obtained by evaluating the coefficients
of s in G(s1, 1) and s in G(1, s2), respectively.
Chakraborty (1981) provided a computational
algorithm for computing the distribution of Y, and
the same technique also applies to X. Since for the
quantitative phenotypes, the distribution of Y can-
not be generally observed directly, one might be
interested in drawing inference regarding it by the
conditional distribution of Y (number of heterozy-
gous loci) given an observation on X (the
phenotypic score). In practice, however, this is
complicated by the effects of non-genetic environ-
mental factors which may modify the genotypic
score X. For simplicity, if we assume that X is
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It is interesting to note that when all loci con-
trolling the quantitative trait X have the same allele
frequencies, the conditional distribution of Y
given X does not depend on the allele frequency
p. Furthermore, since equation (6) is defined only
for even values of r —k, for a fixed value of r(0
r 2n), k can take values from 0 to mm. (r, 2n —r),
such that r — k is always even. Equations (3) and
(6) are instructive enough to show that the
classification of individuals into heterozygosity
classes by phenotypic scores can be quite mis-
leading. This is numerically demonstrated in table
1, where the conditional distribution of Y (the

(4a) number of heterozygous loci) for different
genotypic values (X) are shown for the case where
the allele frequencies are identical for all loci (the
exact value is irrelevant, since eqn. (6) is indepen-
dent ofp).

Two situations are illustrated with table 1, the

(4b) number of loci (n) being 5 and 10. In both cases
it is seen that the central phenotype (X = 5 and
10) can have heterozygosity at less than half of the
loci with probability approaching 1/4 or more. It
can be shown from eqn. (3) or (6), that the mean
number of heterozygous loci increases gradually
from extreme to central phenotypes, numerical
illustrations of which are given in fig. 1. However,
since the distributions of the number of heterozy-
gous loci are overlapping for different phenotypic
classes (see table 1), classification of individuals
into different heterozygous classes by phenotypes
of individuals can be quite error prone.

It is also interesting to note that while the
conditional distribution of the number of heterozy-
gous loci given the phenotypic score is independent
of the allele frequency (p), when all loci have
identical allele frequencies, the highest number of
heterozygous loci may not always occur for modal
phenotypes. For example, if the allele frequencies
are skewed (i.e., p<O.5 or p>O.S), the modal

________________________ genotypic score will not be exactly at the middle
of the range of X, while the average number of
heterozygous loci will always be highest for the
central value of X. This is graphically shown in
fig. 1, where the distribution of X is given for
n = 10, for three values of p(03, 05, and 0.7) by
the solid lines, and the dotted lines show the mean

sd of the number of heterozygous loci for each
value of X for the same value of n (the means are
represented by closed circles). These clearly

___________________________ ,, \ demonstrate that the number of heterozygous loci
may not be always associated with the modal
phenotypic score, and hence the predictability of
heterozygous status of individuals by phenotypic
scores alone can be misleading.

directly observable and is unaffected by environ-
mental factors, the conditional distribution of Y
given X = r is given by

Prob(Y=kIX=r)
—Coefficient of ss in G(s1, s2)—

Coefficient of s in G(s, 1)
for 0 r2n, and 0 k n.

For the case where the gene frequencies at all
loci are equal, i.e., p, =p for all I, it is easy to show
that

Prob (X = r) = (2n) prq2n_r

and

Prob(Y= k)=() (2pq)k(p2+q2).

Furthermore, in this case the multi-locus
genotype of any individual can be represented by
atriplet(n1, n2, n3),where n1, n2,and n3represent
the numbers of loci exhibiting genotypes AA, AB,
and BB, respectively; with n1 + n2 + n3 = n. Thus,
the conditional probability of equation (3)

Prob (2n1 + n2 = r n2 = k)
Prob(Y=kjX=r)= Prob (2n1 + n2 = r)

(5)

which may be written as

Prob(Y=kIX=r)
I r—k r+k

Prob [ni =—-—, n2= k, n3 = n

becomes

Prob (2n1 + n2 = r)

(—

{(r—k)/2}!k!{n—(r+k)/2}!

x p(r_k)(2pq)kq2n_(r±k))

/(
(2n)! prq2n_r

r!(2n—r)! /

B(n, 1/2; k)B(n_k.
r—k\

1/2;—)2j
B(2n, 1/2; r)

where B(n, p; m) denotes the binomial probability
for m (0 m n) with parameters n and p.
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Table 1 Conditional distribution of the number of heterozygous loci (Y) given genotypic value (X)

x
Y

0 1 2 3 4 5 6 7 8 9 10

n—S

0,10 10
1,9 00 10
2,8 0111 00 0889
3,7 00 0333 0'O 0667
4,6 0048 00 0571 00 0381
5 00 0238 00 0635 00 0127

n 10
0,20 10
1,19 00 10
2, 18 0053 00 0947
3,17 00 0158 00 0842
4, 16 0'009 00 0297 00 0694
5, 15 00 0047 00 0433 0'O 0520
6, 14 0003 00 0130 00 0520 00 0347
7, 13 00 0022 00 0260 00 0520 00 0198
8, 12 0002 00 0080 00 0'400 00 0427 00 0091
9,11 00 0015 0•0 0200 00 0480 00 0274 0.0 0031

10 0001 00 0068 00 0364 00 0437 00 0125 00 0005

Figure 1 Relationship between the mean number of heterozy-
gous loci underlying a polygenic quantitative trait given
the phenotypic score and the distribution of the trait con-
trolled by 10 loci. The solid lines give the distributions of
phenotypic scores in the population (for gene frequencies
p = 03, 05, and 0.7), and the dotted lines represent mean

of the number of heterozygous loci given the
phenotypic scores. The closed circles represent the mean
values of number of hetrozygous loci given phenotypic
values (see text for details).

In analysis of data of this type, individuals are
often classified into modal type and extreme type
by grouping them into classes by phenotypes (e.g.,
Livshits and Kobyliansky, 1984; 1985). For
example, if the individuals are classified into three
classes: E0 (Xmean—067sd), M(mean—
067sd<Xmean+067sd); and E1 (X>
mean+067sd), it is not always true that the
heterozygosity level will be highest for the M class.
Table 2 provides numerical calculations of such
values from the theoretical distributions presented
above. For numerical illustrations, we have chosen
three values of p (03, 05, and 07) and two values
of n (5 and 10) for each of which the three classes
(E0, M, and E1) were defined by the corresponding
mean and sd of the phenotypic scores (X), and
within each class the distribution of number of
heterozygous loci is computed. As a summary
measure, table 2 shows only the mean and sd of
the number of heterozygous loci within each class.
These calculations demonstrate that the
phenotypic class where the maximum average
heterozygosity occurs is dependent on the allele
frequencies, and the central class (M) is not always
the one which exhibits the highest average
heterozygosity.

0 4 8 12

Phenotypic Value

16 20
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No. of heterozygous

n p
Phenotype loci

class prob. mean s.d.

5 03 E0
M
E1

0383
0267
0350

1401
2333
2686

0723
0942
1144

5 05 E0
M
E1

0172
0656
0172

2102
2708
2102

0930
1151
0930

5 0•7 E0
M
E,

0350
0267
0383

2686
2333
1401

1144
0942
0723

10 03 E0
M
E

0237
0535
0228

2910
4376
5133

1041
1366
1583

10 05 E0
M
E1

0252
0496
0252

4774
5229
4774

1515
1613
1515

10 07 E0
M
E,

0228
0535
0237

5133
4376
2910

1583
1366
1041

DISTRIBUTION OF PHENOTYPIC SCORES FOR
GIVEN HETEROZYGOSITY

The theory presented in the previous section shows
that when the loci that control a polygenic trait
are not known, the level of heterozygosity at these
loci cannot always be accurately predicted from
the phenotypic values alone. One could, however,
ask a related but somewhat different question. If
such loci can be scored, to what extent is the
phenotypic variability associated with the
individual's heterozygosity? Chakraborty and
Ryman (1983) conducted a theoretical study of
this problem, and demonstrated that the
phenotypic variability is the least for individuals
that are heterozygous for most loci. In other words,
the maximum variance of X is expected to occur
for individuals who have Y values at the extreme
(i.e., Y=O or n). Zouros and Foltz (1987) claim
that the frequency of such individuals is very small
in the population, since most individuals will
demonstrate heterozygosity of intermediate levels.
This, however, does not negate the fact that poly-
genic traits with additive allelic effects always pro-
duce a negative correlation between heterozygosity

Table 2 Mean and standard deviation of the number of
heterozygous loci for different phenotypic classes of a
polygenic trait

Note: the classes are defined as E0:Xt—067o-;
M:1. —067r<X+067cr; and E1:X> ii+067o; where
p.=2np, and cr='1i.

(as determined by number of heterozygous loci)
and phenotypic variance, and for this to happen
there is no need to invoke a selection hypothesis
for the trait or for the underlying loci. Using the
formulation of the previous section, we can evalu-
ate the distribution of phenotypic scores for a given
number of heterozygous loci.

In general, the probability that X = r given
Y = k can be written as

Prob (X = r Y= k)

— Coefficient of ss in G(.1, s2)—
Coefficient of s in G(1, s2)

where G(s1, s2) is as defined in equation (2).
In particular, when allele frequencies are equal

at all loci,

Prob (2n1 + n2 = r, n2 = k)Prob(X=rIY=k)=— Prob(n2=k)
(8)

where n1, n2 are as defined earlier.
Algebraic simplication yields the equation

Prob(X=rIY=k)=({k2)

F 2 1
{r—k}/2

F q2 1X
p2±q2j [p2_q2]

(9)

defined for even values of r —k, i.e., for r = k, k + 2,
k+4,. . .min(2n—k).

This shows that the mean and variance of
phenotypic scores for a given level of heterozygos-
ity (Y=k) are

11k = [2np2+ k(q2 —p2)]/(p2+ q2), (10)

and

o =4(n — k)p2q2/(p2+q2)2, (11)

respectively. Note that equations (10) and (11) are
identical to equations (4) and (5) of Chakraborty
and Ryman (1983).

Figure 2 illustrates the dependence of the mean
(ILk) and s.d. (a-k) of phenotypic scores on the
number of heterozygous loci, for n = 10, for three
specific values ofp(03, 05, and 0.7). Two implica-
tions of this theory are noteworthy in relation to
the studies of phenotypic variability and heterozy-
gosity: (a) it is clear that irrespective of allele
frequencies at the loci governing the trait,
phenotypic variance is a decreasing function of
the number of heterozygous loci; and (b) as a
consequence of the fact that the variance (a)
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Figure 2 Relationship of the number of heterozygous loci with (a) mean and (b) standard deviation of the phenotypic score of a
polygenic trait with complete heritability. For these computations the trait is assumed to be controlled by 10 loci at each of
which the allele frequencies of two alleles are the same (p).

decreases with k and the mean (,ak) approaches
the central value as k increases, the frequency of
central classes of phenotypes increases as the
individuals exhibit more heterozygosity. There-
fore, we conclude that when heterozygosity of
individuals reflect heterozygosity at the loci
governing a quantitative trait, the above two
observations are direct consequences of the addi-
tive allelic effects of the loci, and no selective
differential is necessary to explain these findings.

HETEROZYGOSITY AT BIOCHEMICAL LOCI AS A
REFLECTION OF GENOMIC HETEROZVGOSITY

In relation to the studies of heterozygosity and
variability of morphological or fitness related
traits, commonly only one to about a dozen bio-
chemical loci are used (see e.g., Zouros and Foltz,
1987 and the cited references in that review). If
these loci are not directly involved in determining
the trait in question, one might ask how well does
the individuals' heterozygosity detected by these
loci reflect the genomic heterozygosity of the
individual? Mitton and Pierce (1980) and
Chakraborty (1981) addressed this problem.
Under the assumption that if L loci from a
collection of N loci are randomly sampled,
Chakraborty's analytical treatment shows that the
correlation between the heterozygosity measured
by L loci and the heterozygosity for all N loci is

roughly equal to (L/N)'2, although the exact
value is dependent on the mean and variance in
heterozygosity values over N loci (Chakraborty,
1981). Since the fraction, L/N, in all empirical
studies is very small, Chakraborty asserted that the
heterozygosity of an individual determined by the
traditional biochemical markers does not provide
an accurate indicator of the individual's genomic
heterozygosity.

Zouros and Foltz (1986) argued that the
assumption of random samples of loci being scored
by the different biochemical techniques may not
be appropriate. In fact, they argue that the
empirical correlation most likely reflects the
quantity

[ H/ Hi], (12)

where I-I, is the heterozygosity at the ith locus. In
other words, the fraction of total heterozygosity at
loci affecting the character accounted by the scored
loci can be used as an indicator of how well the
heterozygosity at the biochemical loci reflects the
individual's genomic heterozygosity. It is true that
in heterozygosity vs. morphological diversity
studies only the highly polymorphic loci are
employed. But Zouros and Foltz's assertion that
electrophoretic techniques detect the polymorph-
isms with highest heterozygosities does not seem
to be correct. Even if the sample of L loci represents

20

15

5

>
3

U0
C
0

0.

0
C
3

-C
a.

0 2 4 6 8 10 0 2 4 6 8 10

Number o Heterozygous bc I per Individual
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the most heterozygous loci of the genome, it can
be shown that the correlation between an
individual's measured heterozygosity (at L loci)
and the genomic heterozygosity is not given by
expression (12), but by the expected value of

IL IN 11/2
I H,(l—H1)/ H(l—H1)
Li=i I i=i

There are two types of evidence suggesting that
the expression (13) is not anywhere close to one.

First, in the statistical analysis of protein poiy-
morphism in natural populations detected by elec-
trophoresis, Fuerst et aL (1977) showed that the
distribution of heterozygosity values across the
studied electrophoretic loci agrees with the expec-
ted distribution under the assumption that these
are random samples from the genome. Hence, the
average heterozygosity at the population level is
well estimated when a sufficient number of elec-
trophoretic loci are used. This in turn suggests that
the expected values of the individual terms in the
numerator and denominator of expression (13) are
roughly equal for the general electrophoretic sur-
veys. If electrophoresis detected most of the
genomic polymorphism, this would not have been
the case. Hence, the assertion that most of the
genomic variation is revealed by the surveyed loci
does not seem to be correct.

Second, even though at present only a small
number of studies have been made regarding the
genetic diversity at the nucleotide level in natural
populations of various organisms, the current esti-
mate of nucleotide diversity is roughly of the order
of 0002 —0020on a per site basis (Kreitman, 1983;
Chakravarti et aL, 1984; Yager et al., 1984).
However, since substitutions at the third position
of a codon are roughly twice as frequent as those
at the first or second positions (Nei, 1983), we can
assume that the nucleotide diversity for the first or
second position of the order 00015-0015, and
that for the third position is 0003 — 003. Further-
more, if we assume that the probability of a random
nucleotide change causing an electrophoretically
detectable amino acid change is about 028 for the
first position, one-third for the second position,
and only one-twelfth for the third position
(Kimura, 1983), the estimated heterozygosity per
codon detectable by electrophoresis amounts to
00012 to 0012. On the other hand, in the general
electrophoretic surveys the average heterozygosity
in natural populations has been observed to be of
the order of 047 or less (Nei and Graur, 1984).
Assuming that an average protein has roughly 300
amino acids, the heterozygosity observed by elec-

trophoresis per codon amounts to 00016, which
is close to the lower range of the estimate obtained
from nucleotide diversity measures. We may there-
fore conclude that there is no solid evidence that
expression (13) is much larger than (L/N)1'2, as
claimed by Zouros and Foltz (1987), and hence

i prediction of genomic heterozygosity from a survey
of small number of highly polymorphic elec-
trophoretic loci may not be appropriate.

DISCUSSION

The theory discussed above shows that: (a) the
classification of individuals into different heterozy-
gosity classes by phenotypes of a polygenic trait
can be quite error prone, and (b) even if the under-
lying loci of polygenic traits are biochemically
detectable, the negative relationship between
heterozygosity of individuals and phenotypic vari-
ance, and a positive relationship between the
frequency of modal class and individuals'
heterozygosity can be explained by additive allelic
effects of polygenic traits. Evidence is also pro-
vided that suggests that from the electrophoretic
markers an individual's genomic heterozygosity
may not be predicted accurately. Then, the ques-
tion is how do we explain the observed relationship
between phenotypic variance and frequency of
phenotypic classes with electrophoretic heterozy-
gosity without invoking interaction of loci that
segregate independently of each other?

To explain these observations by the hypothesis
of developmental homeostasis would require pre-
cise estimation of an individual's genomic
heterozygosity by the surveyed loci. This is not the
case, as discussed above. The other two popular
hypotheses have been overdominant selection at
the electrophoretic loci or selection at closely
linked protein loci (associative overdominance).
The later hypothesis would reflect that heterozy-
gosity at the protein loci may have a synergistic
effect with that at the loci governing the morpho-
logical trait. At this point, it might be mentioned
that two sets of independently segregating loci may
show correlated heterozygosity in individuals of a
substructured population. Nei and Li (1973)
showed that significant linkage disequilibrium
might be produced at independently segregating
loci in a substructured population. Sinnock (1975)
showed that the two locus Wahiund effect results
in a depletion of frequencies of double heterozy-
gotes which can be more than the proportional
decrease of heterozygotes at each individual
locus. Thus, one may observe a correlation of
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heterozygosity levels at two unlinked loci for
individuals in a subdivided population, and hence,
the heterozygosity levels detected by protein loci
may be correlated with heterozygosity of loci
governing the morphologic trait to some extent,
even if they are independently segregating. Of
course, since the observed levels of linkage dis-
equilibrium at the surveyed loci in natural popula-
tions is quite low (e.g., Mukai et a!., 1971, 1974;
Sinnock and Sing, 1972; Langley et a!., 1974), it is
unlikely that the correlation between heterozygos-
ity levels at the biochemical loci and the loci
governing morphologic variation can be explained
by multi-locus Wahiund effects alone.

Evidence is now being accumulated suggesting
that electrophoretically determined biochemical
variation has measurable physiological con-
sequences, some of which may modulate the
phenotypic traits. Koehn et a!. (1983) reviewed
extensive experimental evidence of this suggestion.
In humans, Orr eta!. (1981) showed that variation
in traits like serum cholesterol is affected by
genotypes at the ABO, Haptoglobin, Gamma
globulin, and Secretor loci. Boerwinkle eta!. (1986)
showed that several biochemical traits indeed
explain substantial proportions of genetic variabil-
ity of many quantitative traits. At the DNA level
too, restriction site polymorphisms are shown to
explain significant component of variations of
some physiological traits (e.g., Hanis et a!., 1985).
Thus, it is not totally unreasonable to assume that
major genes residing at close linkage distance from
some of the electrophoretically determined
markers are the factors that at least partially control
morphological variability. If this is the case, then
the observation of an association of heterozygosity
with phenotypic variability may truly be the reflec-
tion of the additive effects of the loci underlying
these traits.

Several authors favour the hypothesis of over-
dominant selection to explain the association of
phenotypic variance and biochemical heterozygos-
ity (e.g., Mitton and Grant, 1984 and the cited
references of their review). This hypothesis poses
a number of problems regarding other facets of
protein polymorphism data. For example, if over-
dominant selection operates on many protein loci,
the average heterozygosity is expected to be much
higher than the one predicted by the neutral muta-
tion theory (Maruyama and Nei, 1981; Nei and
Graur, 1984). But the observed levels of heterozy-
gosities in various organisms are generally much
smaller than their neutral expectations. If the
neutral mutation model is in trouble to explain
this (as suggested by Livshits and Kobyliansky,

1985), it would be more troublesome still to invoke
the overdominant hypothesis as a general rule.
Furthermore, in examining the allele frequency
distributions of some 138 populations of various
organisms, Chakraborty et a!., (1980) showed that
the allele frequency spectrum is generally U-
shaped (which is in accordance with the neutral
model), instead of being bell-shaped orW-shaped,
which is the prediction of the overdominant model
(Li, 1978). The observations on activity levels in
heterozygotes and homozygotes of some enzymes
are also against the overdominant hypothesis (see
e.g., Harris, 1975; Kacser and Burns, 1981).

The associative overdominance hypothesis, as
metioned earlier, may be an easier explanation for
the correlation between the number of heterozy-
gous loci and fitness related traits. This hypothesis
apparently has its origin due to Jones (1917), as
documented by Nei (1987). It is well known that
in a finite population significant linkage disequi-
librium between some traits may be produced by
genetic drift (Hill and Robertson, 1968; Sved,
1968) and this would cause associative overdomin-
ance. Ohta's (1971) study also shows that when a
protein locus with two alleles is linked with
deleterious genes, heterozygotes at the protein
locus may demonstrate higher fitness than homozy-
gotes. Nevertheless, unless the loci governing the
phenotypic traits are determined, these explana-
tions cannot be tested directly.

Finally, it should be stated that not all reports
of correlation between heterozygosity and fitness
related traits are real. For example, Kobyliansky
and Livshits (1985) claimed evidence of heterozy-
gous advantages in human populations in terms
of fertility in connection with five morphological
characters: weight (W), stature (S), hand width
(HAW), bigonial diameter (BIG), and ear width
(EW). In showing these, they have classified 230
spouses from Mexican families into three classes
(low= 1, intermediate=2, and high=3), depend-
ing on their phenotypic scores.

Assuming that these traits are polygenic and
heritable, they divided the parental data into nine
mating types. On the supposition that the expected
heterozygosity in the offspring of these mating can
be arranged in ascending order, they reported the
mean and s.d. of the number of living children
from each mating type. Their analyses indicate that
fertility, as determined by number of living child-
ren, is positively correlated with the heterozygosity
when parental phenotypes as well as expected
heterozygosity of the offspring are taken into
account. From their data (summarised in table I
of their paper), a simple analysis of variance may
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be conducted to see if the nine mating types show
any significant differences in the fertility levels, the
result of which is negative for each trait they
examined, contrary to their findings. Furthermore,
if we group the mating types by the expected
heterozygosity of the offspring (which is error
prone, as shown in this paper), the three groups
of matings that give rise to expected heterozygosity
of OO (from matings lxi, and 3x3), O5 (from
matings 1x2,2xl,2x3,3x2,and2x2),and1O
(from matings 1 x 3 and 3 x 1) are also statistically
homogeneous with regard to mean fertility.

Table 3 shows these computations from the
data presented in Kobyliansky and Livshits (1985).
These results are in direct contradiction with the
assertion of their paper, but are in accordance with
the findings of Chakraborty et a!. (1986) that fer-
tility is not affected by heterozygosity of the
individuals determined from other loci, even
though in the study of Chakraborty et a! (1986)
no effort is made to determine the expected
heterozygosity of the offspring of mothers of
different genotypes.

In conclusion, we may state that even when the
observations on associations between biochemical
heterozygosity and morphologic traits are real,
they may not always be suggestive of selective
factors involved in these traits. Any explanation
invoking selection should, at the same time be
compatible with other facets of protein poly-
morphism data, and this does not seem to be the
case with an overdominant model. As shown here,

the additive allelic effects at loci that are directly
involved, or at disequilibrium with the trait may
cause such association may be sufficient to explain
some of these observations. In this regard the
measured genotype approach (Boerwinkle et al.,
1986) may help substantially to resolve the con-
troversy regarding the underlying mechanism that
might cause an association between phenotypic
variability and biochemical heterozygosity.
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