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Accurate estimates of the true additive genetic variance d) of a cross between two pure breeding varieties can be
obtained from the additive genetic components of the first three ranks (D1, D2 and D3) when the latter are biased by
the presence of linkage. Additive genetic variances of the lower ranks are directly equatable with =i d because they
incur minimal bias even when the predominating linkages are strong. More precise estimates of d are however
obtainable from the asymptotic regression analysis or a weighted least squares analysis.

Estimates of j—1 d when obtained from 784 hierarchically derived F7 families of the V2 x V12 cross of Nicotiana
rustica were observed to be considerably larger than the additive genetic variance displayed by the F13 inbreds of the
same cross for all the characters that showed significant excess of repulsion linkages. These results lend support to our
commonly held view that the prediction procedures generally underestimate the probability of successful recovery of
superior recombinant inbreds.

INTRODUCTION

The effects of linkage on the expectations and
estimates of additive genetic variance (D) are well
documented (Jinks and Pooni, 1976, 1981, 1982,
1984; Kearsey, 1985; Mather and Jinks, 1982). In
general, a linkage disequilibrium after summing
over all pairs of loci, though not linkage per Se,
leads to an underestimation or overestimation of
the expected additive genetic variance I d for
an excess of repulsion phase or coupling phase
linkages, respectively (Jinks and Pooni, 1982).
Thus, while the biased estimates of the additive
genetic variance from the early generations of a
cross may approximate closely with the hitherto
biased heritable variance of the F inbreds, neither
of these statistics provide the true magnitude of
the additive genetic variance when linkage dis-
equilibrium is significant. in this paper we explore
the possibilities of obtaining linkage free estimates
of the additive genetic variance d and indeed
show that this is possible both in theory as well as
in practice.

THEORY AND METHODS

According to Mather and Jinks (1982) the total
additive genetic variance (F) in the nth genera-

tion of selfing from a cross between two pure
breeding varieties can be obtained from the
summation ()'D,, where r is the rank of the
source variability. In the absence of linkage
Dr = d for each of the r = ito r = n—i ranks.
However, when linkages are significant the
expectations of the additive genetic variances vary
between the ranks and

k c
Dr= d+ 2(1 — 2pYd4

i=1 R i=I,j=i±I

where the linkage component 2(1 —2pYd4 is
added for each pair of genes linked in coupling
(C) and subtracted for each pair linked in repul-
sion (R) (for details see Jinks and Pooni, 1982).
Therefore additive genetic variances (D) when
estimated from different ranks of a hierarchical
analysis have the following expectations.

Cd± 2(1—2p,)d4
R i=1,j=i±1

Cd± 2(1—2p)2d4
i=1 R t==1,=1÷1

c
D3= d± 2(1—2p)3d4...i1 R i=I,ji+I
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It is clear from these expectations that the
contributions of d to the additive genetic
variance of each rank remains the same
throughout. The coefficients of linkage, on the
other hand, follow the geometric series and their
contributions decrease rapidly as r increases. Thus,
the estimates of D, when r 5 must approximate
closely with = 1 d, the true additive genetic
variance of the cross. We shall therefore exploit
this unique property of the rank variances and
assume that the D. of the lowest rank is equal to
—I d (method 1).

The estimates of D from different ranks,
however, may not differ significantly especially
when r is large. Also, the larger sampling errors
of the variance components may make the magni-
tude of D(1) smaller than D(2) or even D(_3)
when it is expected to take a larger value and vice
versa. A more consistent estimate of D should
therefore be obtained by the weighted least squares
analysis and we shall use this technique to obtain
a more accurate estimate of d (method 2).

Further, we can calculate the expected values of
(1 —2p,), (1 —2p)2, (1 2pq)3 etc. by substituting
(D3—D2)/(D2—D1) and in turn substitute these
values as coefficients of the linkage disequilibrium
component in a model which allows E the
environmental component, d and .to be
estimated by weighted least squares (method 3).
This procedure also allows us to obtain parallel
estimates of d when the average value of
(1 —2p) can be calculated by more than one
method. However, the reliability of these estimates
is completely dependent on the accuracy with
which the average value of (1 2pq) is estimated.

Alternatively, we can vary the level of linkage
disequilibrium (method 4). Many of these models,
however, may fit the data and we shall select the
most appropriate one by applying the following
criteria.
(a) All parameters must be significant.
(b) The x2 of goodness of fit must take a non-
significant value and individual (O — E)2/w,
values should be smaller than 20.
(c) The level of linkage disequilibrium must be
only one or two steps higher than the one which
makes the x2 significant.

Finally, when there is a preponderance of
repulsion linkage the consecutive values of the
rank variances follow Mitscherlich's law (1930).
Thus the value of D steadily approaches its
maxima of das r becomes large. Therefore,
we can estimate d as an asymptote by carry-
ing out an asymptotic regression analysis (method
5). The procedural details of this analysis are

available from Patterson (1956, 1960) and
Snedecor and Cochran (1967) and will not be
repeated here.

EXPERIMENTAL DESIGNS

We require at least three additive genetic variances
of different ranks (say D1, D2 and D3) to obtain
a reasonably accurate estimate of d. Tradi-
tionally they can be obtained from the pedigree
families derived by self-pollination or sib mating
(Jinks and Pooni, 1984; Virk et al., 1981; Cooke
and Mather, 1962). However, in the absence of
non-additive effects the hierarchical structure of
the selfing or sib mating series must be taken to at
least the fifth generation (F5 or S5) to obtain the
estimates of D1, D2 and D3 (Jinks and Pooni,
1982).

Alternatively, independent and unbiased esti-
mates of D1, D2 and D3 can also be obtained by
extracting doubled haploids from the F1, F2 and
F3 generations of a selfing series. Another design
that can provide the estimates of these components
is the triple test cross. However, one needs to
produce three triple test crosses (one each from
the F2, F3 and F4 generations) and that would be
expensive in time and space, although they will
also provide an excellent opportunity for obtaining
the three corresponding estimates of h that
is, H1, H2 and H3.

Finally, if it is possible to cross the material
easily then the F3 and F4 generations can be
replaced by the progenies of the first and second
cycles of randomly mated F2's in which linkage
disequilibrium declines by a factor of (1 —pa) with
each cycle of random mating.

EXAMPLE

We demonstrate the practical applicability of our
procedures by estimating d from hierarchi-
cally derived inbred lines of the cross between
varieties 2 and 12 of Nicotiana rustica. A large
sample (784) of these inbreds and 60 F13 lines
obtained from the same cross by single seed des-
cent were raised during the summer of 1982.
Individual plants from the experiment were scored
for heights at 4 and 6 weeks after planting in the
field (H4 and H6), flowering time (FT), height at
flowering time (HFT), leaf length (LL), leaf width
(LW) and final height at the end of the season
(FH). These data were initially analysed by Jinks
and Pooni (1984) who also provide fuller details
of the experiment and analytical procedures.

Hierarchical analysis of the 784 pedigree
inbreds yields five mean squares. These and the
relevant items of the analysis of variance of 60 F13
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inbred lines have been tabulated in table 1. These
analyses were originally given by Jinks and Pooni
(1984) and are reproduced here for reference only.
The cr2's associated with each of these mean
squares have the following expectations when epis-
tasis and genotype x environment interactions are
non-significant.
Hierarchical lines F13 lines

cr=D6+E

(i\12.2) 12D x'
a-2 bf = Interaction between

blocks and families

c,-2wF13 = ()'3D13+ E

For each character we estimate d from these
statistics in the following ways. (a) We estimate,
D1, D2, D3 and D4 (=D5 = D6 = D7) from the
mean squares of the hierarchical analysis and
eQkuate D4 with the true additive genetic variance

d. (b) We fit different Dr'S to the same mean
squares following Jinks and Pooni (1984) and
equate the weighted least squares estimate of D4
with d. (c) We estimate the average value
(1 — 2p0) from the perfect fit solutions of D1, D2
and D3 wherever possible and obtain the estimates
of d by weighted least squares analysis. (d)
We fit the E, and d model sequentially to
the five mean squares of the hierarchical families
by varying the average value of (1 —2p,) from 005
to 0-50 at a constant interval of 0:05 and the best
model is chosen according to the criteria specified
in section 2. (e) All the eight mean squares of table
1 are also subjected to sequential model fitting as

described above but two additional parameters
(a-2wF13 and a-2bf) are allocated to account for
the effects of the environmental and interaction
components of F13 lines. (f) We estimate the
asymptote d from an asymptotic regression
analysis of D1, D2, D3 and D4 (=D5).

These estimates and their square roots(/ d) are tabulated for each of the seven
characters in table 2. The corresponding additive
genetic variances of the F13 inbreds and their
square roots are also given for comparison. These
have been taken from table 4 of Jinks and Pooni
(1984).

CONCLUSIONS

In this paper we have set out to demonstrate that
it is possible to obtain unbiased estimates of the
additive genetic variance d in the presence
of linkage disequilibrium. These estimates can be
reliably obtained from the first three ranks (D1,
D2 and D3) of the additive genetic variance that
are extractable from the pedigree families of a
selfing or sib mating series (see Jinks and Pooni,
1984; Virk et a!., 1981; Cooke and Mather, 1962,
for details). Because pedigree inbreeding is the
lynch pin of a large number of breeding program-
mes this kind of information is often available and
therefore can be used for estimating d. This
in turn can provide a second opinion about the
potential of the breeding material at a half way
stage of a breeding programme and thus can help
the breeder in formulating a long term breeding
strategy.

In theory, methods 1 and 2 provide estimates
that are only close approximations to the true

Table I Re!evant mean squares for the hierarchical and inbred !ines

Character
Source Item d.f H4 H6 FT HFT LL LW FH EMS

Hierarchica!
inbreds

Between F2
groups
Between F3
groups/F2
Between F4
groups/ F3/ F2
Between F7
families! F4/ F3/ F,
Within F7
families

96

98

196

392

5347

15!4-82

38600

18385

73-73

19-10

714136

220319

84178

346-80

91-36

3282-33

119522

31987

15358

33-83

1364071 38691

5741-09 119-21

1786-30 3890

756-85 1749

276-09 8-04

471-09

12690

44-73

1963

8-23

2425497

7825-78

218685

1006-38

287-46

fft+8o+16o
+32o+64o
+8o+16o
+32o-

+8o+16o

o+8o
o

F13 lines Between SSD
families
Blocksx
families
Within families

59

59

816

534-85

30-61

17-14

3027-61

122-44

69-70

124612

3076

28-85

758719 19475

314-23 7-39

237-50 8-47

21864

10-10

9-13

994226

274i8

25544

aF3+8af+ l6o
oF3+8of

F3
t for definitions of cr2's see text.

Every "between families" mean square is significant when tested against the appropriate error.
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Table 2 Estimates of the true additive genetic variance d, the additive genetic variance (DF13) of the F13 inbred lines and
their square roots for the seven characters.

Character

Source/method
H4It 2

H6
1 2

FT
1 2

HFT
I 2

LL
1 2

LW
1 2

FH
I 2

1. Lowest rank 7285 854 34059 1846 15968 1264 64107 2532 1259 355 1525 391 95861 3096
2. W. L. S. estimates for 6640 815 31075 1763 15734 1254 57455 2397 1081 329 1277 357 84100 2900

the lowest rank
3. W.L.S. estimates using — — — — — — 58985 2429

the calculated value
of (1 —2p)

4a. Serialised model 10688 1034 31367 1771 21958 1482 58258 2414 1081 329 1268 356 82471 2872
fitting to five
mean squares

4b. Serialised model 8587 927 33008 1817 15996 1265 58706 2423 1092 330 1275 357 86330 2938
fitting to eight
mean squares

5. Asymptotic regression — 71491 2674 18844 1372 74960 2738 1180 344 1370 370 86970 2949

Average 908 1974 1327 2484 337 370 2951
F13 inbreds 3132 560 18157 1347 7607 872 45456 2132 1165 341 1309 366 60535 2460

t I =additive genetic variance; 2 = square root of the additive genetic variance.

magnitude of d. These estimates can, there-
fore, contain an appreciable amount of bias
especially when the linkages are tight. The efficien-
cies of methods 3 and 5, on the other hand, are
directly related to the precision of the estimates of
D1, D2 and D3. Thus they can also fail to provide
realistic estimates of d when the estimates
of the rank variances are unreliable. However, it
is highly improbable that all of these methods will
fail simultaneously for the same reason. Neverthe
less until there has been further theoretical and
experimental investigations of the relative
reliabilities of different methods one is well advised
to employ as many of them as possible to arrive
at a consensus estimate of Ld.

In practice it is reassuring that four of the five
methods provide acceptable estimates of d
for each character irrespective of the presence (for
H4, H6, FT, HFT and FH) or absence (for LL
and LW) of linkage disequilibrium. This shows
that with the quality of data available from our
experiments these four methods are capable of
providing consistent estimates of the true additive
genetic variance under all situations. However,
method 3 has consistently failed to provide a realis-
tic estimate of j—1 d for all characters except
FIFT and this can only be due to the low reliability
of the estimates of D1, D2 and D3. Method 5 on
the other hand provides an unrealistic estimate for
H4 and its estimate for H6 is twice as large as any
other. Again, the source of this ambiguity is the
negative correlation that exists between the esti-
mates of rank variances for these characters.

These estimates further confirm that the true
additive genetic variance of the V2 x V12 cross
is much larger than the genetic variance of the

first cycle inbreds (F13 lines) for all characters
except leaf length (LL) and leaf width (LW). Hence
we have always underestimated the true inbreeding
potential of this cross by a wide margin. We can,
therefore, expect to extract inbreds which are even
more superior and have a wider range of perform-
ances in the second and third cycles of inbreeding.
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