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Diallel designs, analyses, and reference
populations

A. J. Wright

Some issues which evidently remain as areas of contention in diallel analysis are reveiwed. In the estimation of genetic
variance components for an ancestral reference population in equilibrium, analysis should be applied to F1 data only,
and proceed as for a random effects model. No meaningful reference population is constituted by the parental sample
itself, but an equilibrium reference population which could be derived from these parents can be defined. To give
unbiassed estimates of parameters for this population, analysis must include S1 data, and the parents must be
homozygous and in linkage equilibrium. Estimation of dominance variance must allow for the fact that the diallel
population itself is not in linkage equilibrium by correcting the specific combining ability sum of squares for the mean
S1 vs. F1 difference. Some different analyses of variance of the diallel table are discussed in the context of the above

reference populations.

INTRODUCTION

The diallel cross has probably attracted more atten-
tion and been the subject of more theoretical
examination and practical application over the
past 30 years than has any other mating design. In
spite of this, comparison of the many sources,
including some recent publications (Baker, 1978;
Singh and Paroda, 1984; Pooni et al., 1984), sug-
gests that some controversy remains, particularly
with respect to the choice of design (i.e., including
or excluding S1 progenies or reciprocal crosses),
the nature of the population whose genetic para-
meters are being estimated, and the type of analysis
to be applied and the assumptions necessary. The
purpose of this note is to attempt to clarify some
of these issues, drawing freely from earlier
literature. The emphasis is on underlying principles
rather than rigorous exposition of computational
methods which are comprehensively dealt with
elsewhere.

LEVELS OF ANALYSIS

Diallel analysis can be conducted on at least three
levels, each successive level aiming to provide more
detailed information but requiring more limiting
assumptions. The first level analysis can be referred
to as combining ability analysis and the second as
genetic variance component analysis, both of

which have fixed and random effects forms. The
third is a more detailed analysis of genetic vari-
ances which will be discussed later. Unless other-
wise stated, it will be assumed throughout that all
maternal or other reciprocal effects are absent.

Combining ability analysis

The classification of the full-sib families into half-
sib groups allows the description of each F1 in
terms of the general combining abilities (gca) of
its parents and a specific combining ability (sca).
If the parental set is the whole population of inter-
est, then analysis is confined to this description
and to tests of significance of the two types of
combining ability. If the parental set can be
regarded as a sample from some larger population,
then estimates of the variances o and o can be
derived from a subdivision of the total family
variance:

2 2 2
orp=20;+05.

No genetical assumptions need to be made about
the reference population to which these estimates
relate, and it might typically comprise homozygous
lines with potential as parents of commercial
hybrids. The distinction between fixed and random
effects leads to different expectations of mean
squares (Griffing, 1956b; Wearden, 1964).
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Variance component analysis

It is only with respect to a reference population
which is in Hardy Weinberg equilibrium with
respect to individual loci and linkage equilibrium
with respect to all pairs of loci (i.e., uncorrelated
distributions of genotypes at different loci) that
analysis can proceed to the second level and o
and o) can be equated to genetic variance com-
ponents. These conditions are met only by a large
population produced by repeated generations of
random outcrossing without selection.

Additive, dominance and various epistatic vari-
ances can be defined for such a population
(Cockerham, 1963; 1980), but a two factor design
such as the diallel can only estimate two of them,
and epistasis has to be assumed or shown to be
absent for estimation to proceed. The Wr— Vr
analysis provides a test for epistasis (Jinks and
Hayman, 1953) and a further test is available if
the F2 generation is also grown (Jinks, 1956;
Hayman, 1957). With disomic inheritance and
under certain assumptions about parental equili-
brium which will be described later, additive and
dominance variances can be estimated from o,
and o2, using the relations '

0'34:4(ri/(]+F)
oh=40/(1+F)?

where F is the inbreeding coefficient of the parents.
In the notation of Mather and Jinks (1971) for a
two allele model of gene action:

oh=1Dg=23u(l—w)[d +h(1-2u)]
and
o= iHg = 43u*(1 - u)’’,

where u is the frequency of the increasing allele,
d and h are the homozygote and heterozygote
effects, and summation is over loci. The two allele
notation is used for convenience, and is not a
necessary assumption at this stage (Kempthorne,
1956). The additive variance, o%, carries no
assumptions or implications as to perfect additivity
of gene action, but describes the quantity of vari-
ation which is accounted for by a linear relation-
ship of genotype to gene frequency in a Hardy
Weinberg population, and is of significance in
determining its behaviour under selection
(Falconer, 1981).

When homozygosity of parents for no more
than two different alleles per locus is assumed, the
third level of analysis may be applied and o’
subdivided into further components. These are of
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little direct relevance to the equilibrium population
but convey information about gene action and
frequencies (Jinks and Hayman, 1953; Hayman,
1954b), so

204,=D+H,~ F*—H,,
where
D=43u(1 —u)d?
H =43u(l —u)h’
F*=83u(l—u)QRu—1)dh
H,=162u’(1 —u)’h’

where H,= Hy as defined earlier, and F* is so
written to distinguish it from F denoting inbreed-
ing coeflicient, D is the variance appropriate to a
population of homozygous lines which might be
derived from the reference population, and can be
conveniently referred to as the homozygote
variance.

DEFINITION OF THE REFERENCE POPULATION

The reference population for genetic analysis has
to be in Hardy-Weinberg and linkage equilibrium
and these properties are fulfilled only by large
populations reproducing by panmixia without
selection. There are two possibilities which will be
referred to as the ancestral reference and the
descendant reference. As implied by these terms,
the ancestral reference is a population from which
the diallel parents can be considered a sample or
from which they were derived by inbreeding
without selection. The descendant reference is the
equilibrium population which could be generated
by repeated cycles of random mating initiated by
the diallel parents, and so is defined by the genes
in the frequencies in which they are carried. Since
the parents can never be considered themselves to
constitute an equilibrium population, this is the
only meaningful reference relating exactly to the
genetic properties of the parents per se, and is the
one used by Kuehl ef al. (1968). These two defini-
tions have genetic implications over and above
those imposed by the statistical assumptions of
random and fixed genotype effects to which they
correspond (Griffing, 1956b; Wearden, 1964).
The reason for the distinction between the two
situations can be appreciated if a parental group
is considered wh ch is a sample from an ancestral
reference but also gives rise to a descendant popu-
lation. The parents represent a link between the
two populatins whose striking characteristic is its
limited size, p. In other contexts, this small sample



DIALLEL DESIGNS, ANALYSES, AND REFERENCE POPULATIONS 309

might be referred to as a population bottleneck.
Because of the genetic drift caused by this bottle-
neck, the gene frequencies in the descendant popu-
lation differ from those of the ancestors, and it is
inbred, with an inbreeding coefficient of F=1/2p
or 1/p according to whether the parents are a
sample of non-inbred plants or their inbred
derivatives.

Ancestral reference

Because diploid inheritance is assumed the diallel
Fls are a sample of crosses from the ancestral
reference population, irrespective of the inbreed-
ing status of their parents, whereas the Sls are
inbred and so belong to a different population.
The estimation of 0% and o} must therefore be
based on general and specific combining ability
variance estimates derived from analysis of the F1
data only. This conclusion was first drawn by
Griffing (1956a) and further emphasised by
Kempthorne (1956), Griffing (1958), and Kuehl et
al. (1968). Griffing (1956b, Method 3) and
Matzinger and Kempthorne (1956) described
methods of analysis of this diallel design, although
a similar method was used earlier by Yates (1947).
Hayman (1960, 1963) modified his earlier genetic
analyses of the full diallel cross (Hayman, 1954b)
so as to use Sl data only as a means of deriving
estimates of D, F and H, from those of % and
o} already obtained from the Fls.

At this point it may be noted that since the
reference population itself is in linkage equili-
brium, this assumption does not specifically have
to be made with regard to the parental sample.
Errors in parameter estimates will be introduced
by departures from equilibrium, but these are of
the same type as any other sampling variation,
such as departures from population gene fre-
quencies, and fall into the statistical rather than
the genetical domain. This argument has been
made in a more general context by Cockerham
(1980). Diploid inheritance and absence of epis-
tasis are therefore the only conditions necessary
for the estimation of additive and dominance vari-
ances in this case, with parental homozygosity and
two alleles per locus also required if analysis is
continued to the third level.

Descendant reference

It has been noted that the descendant reference
population has an inbreeding coefficient of F =3p
or 1/p for non-inbred and inbred parents respec-
tively, but that the Fls in the diallel are non-inbred.

As the S1 progenies have a mean inbreeding
coefficient of 3 or 1 in these two cases and constitute
a 1/pth part of the full diallel table, the complete
diallel set correctly represents the descendant
population gene frequencies and inbreeding
coefficient. This full table is in Hardy Weinberg
equilibrium with respect to individual loci, but it
can be noted at this point that it is not in linkage
equilibrium as the Sl progenies have a higher
probability of homozygosity at all loci than do the
Fls.

Pooni et al. (1984) claim to show that a com-
plete diallel set is the appropriate design for the
analysis of samples from a reference population
(ancestral reference). However, they neglect the
issues which have been shown here to determine
the difference between the two models, and by
explicitly assuming that the gene frequencies in
the samples are identical to those in the reference,
have in fact examined the descendant reference
situation as defined.

The estimation of gca or breeding values for
defined limited reference populations has been
discussed by Wright (1973) in the context of syn-
thetic varieties. The gca effect of a parent estimated
from its diallel array, including the S1 term as one
of p values, estimates the value of its random bred
progeny in the descendant reference population,
and justifies the use of array effects as calculated
in Griffing’s (1956b) Method 1 and Hayman’s
(1954a) analyses. The use of the term general
combining ability to describe the mean of a set of
progenies which includes Sls is novel, but is seen
to be consistent with the descendant reference. It
contradicts Hayman’s (1957) view that the S1 pro-
geny should be omitted in this case. As pointed
out by Pooni et al. (1984), the altered weighting
which has to be applied to the S1 values to maintain
orthogonality when only one reciprocal is grown
(Morley-Jones, 1965) means that the gca estimates
are biassed in this case.

Although the gca estimates are individually
meaningful, the arbitrary origin of the parental
genotypes means that the variance of these effects,
o2, has no simple interpretation in terms of o2
unless the further assumptions are made that the
parents themselves are in linkage equilibrium and
have a common, known coefficient of inbreeding.
While this latter condition is fulfilled if the parents
are all homozygous, Kempthorne (1956) and Baker
(1979) and others have pointed out that linkage
disequilibrium is inevitable in small diallels when
several loci are varying. Jinks and Hayman (1953)
and Hayman (1957) have shown that the Wr— Vr
analysis can reveal disequilibrium provided that



310

some segregation takes place in the production of
the F1, and suggest that loci which do not segregate
can be regarded as allelic for the purpose of analy-
sis. However, such linked loci must segregate in
later generations and in common with all loci pairs
have been defined as independently distributed in
the equilibrium descendant population which is
used as the reference.

There are further problems associated with the
estimation of o’ for this population. Griffing’s
(1956b) Method I analysis of the diallel including
Sls provides an sca sum of squares based on devi-
ations of both Fl and S| progenies from mean
array effects, and this estimate or its equivalent b
item in Hayman’s (19544a) analysis has been used
to estimate o3, (Hayman, 1954b). However, it has
already been noted that the diallel population is
not in linkage equilibrium even when the parents
are. Whenever more than one locus is segregating
and their dominance effects are not so opposed in
direction and magnitude so as to cancel exactly,
inbreeding depression results which causes lower
average values on the leading diagonal than off it,
with a consequent inflation of the sca deviations
and the estimate of o3, derived from them. In the
reasoning which led them to conclude that o can
be used to estimate o3, Pooni et al. (1984) summed
the variance contributions of individual loci but
neglected the genotypic correlations caused by the
mixing of FI and S1 progenies. Kuehl et al (1968)
have shown that an unbiassed estimate is obtained
only when the mean Fl vs. S1 contrast is removed
from the sca sum of squares, thus using Hayman’s
(1954a) b— b1 items. This can be contrasted with
the use of b3 alone, equivalent to Griffing’s (1956 b)
Method 3 specific combining ability item, for the
ancestral reference. Clearly this problem is likely
to be more serious for traits and species which
show strong inbreeding depression, and when
small diallels are used.

Kuehl et al. (1968) found that, provided the
parents are in equilibrium, the parameters of the
descendant reference can be estimated more pre-
cisely than those of the ancestors because no
sampling of alleles is involved.

The following table summarises the require-
ments and properties of the various types of analy-
sis discussed.

Estimation of ¢ and o3,

Reference Conditions Analytical procedures
population required

Ancestral (1) Griffing (19565h)
Descendant (1), (i1), (iii)

Kuehl et al. (1968)
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Estimation of D, HI, F* H2

Reference Conditions

population required Analytical procedures

Ancestral Al Hayman (1960)

Descendant All Jinks & Haymzn (1953)
Hayman (1954b)

Conditions:

(i) Diploid inheritance, no epistasis or reciprocal effects.
(ii) Parents included in design.

(1ii) Parents homozygous and in linkage equilibrium.
(iv) Two alleles per locus.

ANALYSES OF VARIANCE

The analysis of variance of diallels excluding the
leading diagonal has already been mentioned and
is comparatively uncomplicated. Since this design
should only be used for an ancestral reference
population, a random effects model is appropriate
with the usual consequences for the expectation
of mean squares (Griffing, 1956b; Wearden, 1964).

Several analyses have been proposed for diallel
tables which include Sls, and have been discussed
by Baker (1979) and Singh and Paroda (1984).
Some of these are based on Griffing’s (1956b)
analysis for the full table, but in addition to fitting
array or gca effects, subdivide the sca variation.
Hayman’s (19544) analysis has already been men-
tioned, and its use as a means of estimating o3
and o7, for the descendant reference. Morley-Jones
(1965) modified this analysis for the half diallel.
Gardner and Eberhart (1966) proposed an analysis
for a half diallel among the parents which are
themselves random mating populations, and
although both Baker (1979) and Singh and Paroda
(1984) have treated it as distinct from the Morley-
Jones (1965) analysis, it is in fact identical if the
same parentage is used.

The b partitioning of Hayman and Morley-
Jones is equivalent to an analysis of the deviations
of the progeny from their mid-parent values, and
Walters and Gale (1976) and Walters and Morton
(1978) have suggested that Hayman’s a (array)
item be replaced by the sum of squares of S1 values
(s) so as to give an alternative analysis with a more
obvious genetic structure. However, since s is not
orthogonal to the b2 item, this analysis is not
statistically acceptable. The only apparent alterna-
tive to Hayman’s and Morley-Jones’ analyses is
provided by replacing /2 (=b2) in Walters and
Gale’s analysis by Griffing’s Method 3 general
combining ability sum of squares computed from
F1 data. This would represent an orthogonal
extension of Griffing’s Method 3 analysis to
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include S1 data, and would offer an ancestral refer-
ence counterpart to the Hayman analysis which is
better fitted to the descendant reference.
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