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SUMMARY

Three methods of estimating the number of S-alleles in a population have been
proposed in the literature (Bateman, 1947; Whitehouse, 1949; Paxman, 1963).
These methods, all of which assume that genotype frequencies in the population
are equal, are described briefly and are used to estimate the number of alleles
in populations of Trifolium pratense (Williams and Williams, 1947), Oenothera
organensis (Emerson, 1939) and Papaver rhoeas (Campbell and Lawrence, 1981 b;
Lawrence and O'Donnell, 1981). The estimates yielded by Bateman's and White-
house's methods are similar to those given by Paxman's maximum likelihood
method with the Trifolium and Oenothera data where there is little reason to
suppose that the allele frequencies are other than equal. Bateman's method,
however, breaks down when used on the Papaver data in which the S-allele
frequencies are known to be unequal; and Whitehouse's and the maximum
likelihood methods yield estimates which are biased downwards when used on
these data.

An attempt has been made, therefore, to devise two new estimators of the
number of S-alleles in a population which do not assume that their frequencies
are equal. The properties of these estimators has been investigated with data
from eight populations generated on the computer in which the numbers and
frequencies of alleles are known. One of these new estimators (E2) yields
estimates which are less biased downwards than those given by Paxman's method
when allele frequencies are unequal, but gives estimates which are biased upwards
when these frequencies are equal. The other estimator (E1) is generally less
satisfactory than the first, particularly when the number of alleles in the popula-
tion is large. Though neither of these new estimators are wholly satisfactory,
there is some justification for using E2 when allele frequencies are known to be
unequal. Estimates given by E2 when used on the Papaver data range from 34
to 42 alleles which, bearing in mind that these estimates are still likely to be
biased downwards, suggests that the number of alleles in natural populations
of this species is likely to be between 40 and 45.

A new procedure for calculating confidence intervals for maximum likelihood
estimates, assuming equal allele frequencies, is also described and applied to
the Oenothera and Papaver data.

1. INTRODUCTION

The problems with which this paper is concerned is: given that, for a species
with a one gene, multi-allelic, gametophytic system of self-incompatibility,
n different S-alleles have been found in a sample of m plants, what is the
best way to estimate the number of alleles, N, in the population from which
the sample has been drawn?

The first to consider this problem was Bateman (1947) who argued that
the probability of a random pair of plants having an allele in common,
assuming that all genotypes in the population are equally frequent, is
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496 S. O'DONNELL AND M. J. LAWRENCE

approximately 4/N. An empirical estimate of this probability can be
obtained from the ratio 2n/m(m —I), where ni,, is the number of pairs of
plants in the sample that have at least one allele in common. An estimate
of N can then be obtained by equating this ratio to 4/N; that is

4 2n,, (1)N m(m-1Y
Using this estimator Bateman estimated that there were 171 different S-
alleles in one variety and 308 in a second variety of Tnfo!ium pratense (data
of Williams and Williams, 1947). In fact, if the genotypes in the population
are equally frequent, the probability of a pair of plants having an allele in
common is 4/N—2/N(N— 1), rather than 4/N. However, for the clover
data, the second term in this expression can be justifiably ignored. It should
also be pointed out that the expected value of the ratio 2n/m(m —1) is

only approximately 4/N.
Whitehouse (1949) gave a method of estimating the number of alleles

in a population from the number occurring in a random sample of fruitbodies
of a heterothallic fungus; his method can also be used to estimate the
number of S-alleles in a population of flowering plants. Treating m and n
as continuous variables, Whitehouse showed that, on average, assuming all
genotypes in the population are equally frequent

dn2(N—n)
dm N

Then

(N
m=j 2(N_n)1

and

n n 1
22mN / 1loe1/

from which an estimate of N can be obtained by iteration. One aspect of
Whitehouse's solution to this problem, which is particularly attractive, is
that dn/dm is the slope of the graph obtained by plotting the number of
alleles found against the number of plants examined during the course of
an experiment (fig. 1); the gradient of this curve becomes zero, of course,
when n = N.

Though Paxman (1963) gave the first account of the maximum likelihood
solution to this problem, a comment by Fisher (1947) on Bateman's (1947)
note leaves no doubt that this solution had been discovered fifteen years
earlier; however, characteristically, Fisher gave no details of the method.
Paxman showed that the expected number of alleles in a sample of size m,
again assuming all genotypes in the population have the same frequency, is:

En=N{1—(l—2/N)m}. (3)
The maximum likelihood estimate of N can be obtained from this expression
by equating En to n.
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FIG. I. The graph obtained by plotting the number of alleles found, n, against the number of
plants examined, m, for the R104 sample of Papaver rhoeas. Data from table 1 of Lawrence
and O'Donnell (1981).

We are indebted to a colleague, Dr Paul Davies, for pointing out that
the problem of estimating the number of S-alleles in a population is a
special case of the more general problem of estimating the size of a closed
population by the capture-recapture method. For example, with the
Schnabel census (Schnabel, 1938; see Seber, 1982), a series of m samples
are taken from the population, each sample (except the first) examined for
marked individuals and the sample returned to the population after each
individual has been re-marked (or marked). A sample of m plants from a
self-incompatible population of infinite size is equivalent to a series of m
samples, each of size 2, from a finite population where sampling is by
replacement. Chapman (1952) and Darroch (1958) have shown that for the
general Schnabel census, the maximum likelihood estimate of N can be
obtained by solving the polynomial

(i_)=fl(i_) (4)

where r is the number of different individuals found in m samples and x
is the size of the ith sample. When r n and all x. =2, this equation is
identical to (3).

The estimates obtained by using Bateman's (B), Whitehouse's (W) and
the maximum likelihood (ML) method on the red clover data, on Emerson's
(1939) data from the Oenothera organensis population and on our own data
from three natural populations of Papaver rhoeas (Campbell and Lawrence,
1981b; Lawrence and O'Donnell, 1981) are shown in table 1. There is little
to choose between the estimators when used on the clover and Oenothera
data, though on general grounds, the maximum likelihood method must be
regarded as the best. However, Bateman's method breaks down completely,
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as Fisher (1947) predicted it would, when used on data where the allele
frequencies are known to be significantly unequal, as is the case with the
three poppy samples. On the other hand, while neither Whitehouse's nor
the maximum likelihood method give nonsensical estimates when used on
our own data, both must be biased downwards (see later). Neither method,
therefore, can be regarded as very satisfactory when used in these circumst-
ances. Before, however, we turn to consider the problem of the estimation
of N in populations where the genotype frequencies are not assumed equal,
it is convenient to deal first with the question of confidence intervals for
maximum likelihood estimates.

2. CONFIDENCE INTERVALS FOR N

In many circumstances, the variance of an estimator can be used to
calculate a confidence interval for the parameter, by means of the familiar
"±2 standard error" type of argument. There are two closely related reasons
why this is a not very satisfactory procedure in the present case. First, the
distribution of the estimate may not be symmetrical, which is particularly
to be expected where m is much greater than N. Second, irrespective of
whether the distribution of the estimate is symmetrical, N cannot be less
than n. Hence it follows that the possible values of a reasonable estimate
must be truncated at n, thus introducing a further potential source of
asymmetry. In these circumstances, the attachment of a symmetrical stan-
dard error to the estimate is not a sensible procedure. What is clearly
required in order to indicate the precision of N is a procedure for calculating
a confidence interval which takes both sources of asymmetry into account.
The procedure given below achieves this objective, for it is independent of
whatever method of point estimation is used, so that any asymmetry in the
distribution of the estimate will not affect it.

Consider an infinite population of self-compatible plants in which N
S-alleles occur and where all N(N— 1)/2 genotypes are equally frequent.
We then ask; what is the probability, P(x; m, N) that a sample of m plants
from this population will contain x alleles? A solution to this problem can
be obtained from the following argument. When the (m —l)th plant was
sampled either x, x — 1 or x —2 alleles had been found; similarly for the
(m + 1 )th plant, either x or x + 1 or x + 2 alleles will have occurred. Given
that x alleles have been found in m plants, the probability that no new
alleles will be found in the (m + 1 )th plant is:

x(x—1)
N(N-1)

the probability that one new allele will be found is

2x(N—x)
N(N-l)

and the probability that two new alleles will be found is

(N—x)(N—x— 1)
N(n-l)

-
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Using "transitional" probabilities like these, the probability P(x; N m) can
be expressed in terms of P(x; N, rn—i), P(x—1; N, rn—i) and P(x—
2; N m — 1) in the following way:

P(x; N, m)='). P(x; N,m-l)

+(N_x+2)(N_x+ . px—' Nm—i). (5)N(N-i)
From the properties of the self-incompatibility system,

P(2; N I) = 1

and

P(x;N,l)=0
all other values of P(x; N, m) can be calculated from (5) on the computer.

Expression (5) defines the probability distribution of the random variable
x for fixed N and rn. Suppose that in a sample of m plants, n distinct
S-alleles have been found and suppose, further, that the true value of N
is N0. The sum 0 can then be defined as:

0=P(x; N0, m)

where the x's fulfill the condition

P(x: N0, m)P(n; N0, m).
The set of all possible values of N0 can be divided into two subsets; those
for which 0 is less than some significance level a and those for which 0
is greater than a. The latter set defines a (1 —a) x 100 per cent confidence
interval for N. This procedure is equivalent to carrying out a significance
test on each of the possible values of N0.

The results obtained when this method is applied to the Oe. organensis
and P. rhoeas data are shown in the last column of table 1 (see, also, table
5 of Lawrence and O'Donnell, 1981). There are two points worth making
about these 99 per cent confidence intervals for the maximum likelihood
estimates of N. First, the width of each interval is inversely correlated with
the repeatability (R) of the experiment in question. This is clearly a desirable
property of any limits that might be attached to an estimate, for the
repeatability is a measure of the thoroughness of an investigation (Campbell
and Lawrence, l981a). Second, in a thorough investigation, most of the
alleles present in the population will have occurreji in the sample. In
consequence, N should be close to n; and, because N,cannot be less than
n, the limit should be asymmetrically located about N as is, indeed, the
case The procedure we have used, therefore, appears to give sensible limits
to N.

Before we turn to consider the problem of estimating N where genotype
frequencies are not assumed equal, it is worth pointing out that equation
(5) can be used to derive the maximum likelihood estimate. Thus if n distinct
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S-alleles have occurred in m plants, the value of N which maximises
P(n; N, m) gives the maximum likelihood estimate of this parameter. Con-
sideration of the algebraic form of equation (5) for low values of m make
it clear that the terms N, n and m in P(n; N m) follow a simple pattern.
From this an explicit likelihood function can be obtained which is

N!
l(N; n, m)= k.

Nm(N—l)m(N—n)!
where k is not a function of N. The maximum of this function can be found
by solving

N?_I(N_n)_(N_2)m =0 (6)

which is a polynomial with only one real root greater than n; it can be
shown that this equation yields the same estimates of N as equations (3)
and (4).

3. UNEQUAL GENOTYPE FREQUENCIES

Each of the estimators we have considered so far assume that the
incompatability genotypes in the population are equally frequent. We know
that this assumption is most unlikely to be true for P. rhoeas, because in
each of the three samples we have examined, the allele frequencies were
significantly unequal (Campbell and Lawrence, 1981 b; Lawrence and
O'Donnell, 1981). It is possible that this assumption does not hold for the
Oenothera data either, for although there is no evidence that alleles are
unequally frequent in Emerson's (1939) initial sample, the fact that he
ultimately found 45 different S-alleles (Emerson, 1940), eight more than
the number at the upper bound of the 99 per cent confidence interval
(assuming equal frequencies), suggests that the allele frequencies may be
unequal in this population also. It is obvious that in these circumstances
the use of the maximum likelihood expression (3) will lead to an estimate
of N which is biased downwards because the more frequent S-alleles are
more likely to occur in a sample than the less frequent ones. There is
considerable justification, therefore, for considering the problem of estimat-
ing N in populations where the genotype frequencies are unequal.

The advantage of the equal frequency assumption is that it imposes a
constraint which makes inference relatively simple, for in these circum-
stances a particular sample determines uniquely the population from which
it has been drawn; that is, the number of alleles found in the sample, n is
a sufficient statistic. If equal S-allele frequencies are not assumed this
constraint is removed. Though the sample contains other information,
namely, the frequencies of the allele present, it is unlikely that any statistic
will be found that can discriminate between all possible populations that
might have given the observed sample. Strictly speaking, then, inference in
these circumstances is impossible.

Despite this rather unpromising conclusion, it is nevertheless possible
to make some progress with this problem. Thus, while in theory an allele
can have an infinitesimally low frequency, in practice its frequency cannot
be less than l/2N, where N, is the number of plants in the population.
Furthermore, an allele with a frequency as low as this would be in danger
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of loss by drift. Hence the only way a large number of alleles could be
maintained at these very low frequencies would be if the mutation rate was
very high; as is well known, the evidence on this matter suggests that the
mutation rate at the S-locus is very low (Lewis 1948, 1951). It follows,
therefore, that there is little reason to believe that populations of P. rhoeas
contain large numbers of S-alleles at very low frequencies. This is an
encouraging conclusion because it is these alleles, if present, which would
cause the most serious difficulty for any estimator that might be devised.

Now while equation (3) is not true, if genotype frequencies are unequal,
the relation

En{1—(1 —2/N)m}

is true whatever the genotype frequencies may be. Furthermore, if the
expectation of the maximum likelihood estimator (assuming equal genotype
frequencies) is denoted as ML, then any estimator 0 which fulfills the
condition

EMLE0N (7)

can justifiably be regarded as an improvement on the maximum likelihood
estimate, since it is less biased, provided, of course, that it does not have
the disadvantage of a substantially greater variance.

One way of improving the maximum likelihood estimator would be to
find an expression for En which was true whatever the allele frequencies
might be. An expression with this property can be obtained in the following
way. The factor {1 —(1 —2/N)m} in equation (3) is the probability of an
allele of frequency 1/N appearing in a sample of m plants. If the allele
has a frequency of x, the corresponding expression is (1 —(1 _2X,)m}and
a quality which can be called "the average probability of an allele appearing
in a sample of size m" can be defined as:

iN
—. {l—(1—2x,y"}. (8)N,1

In an analogous fashion to Paxman's equation (3), the equivalent formula
for the case of unequal genotype frequencies might be expected to be

N
En= {l_(l_2X)m}. (9)=I

We are, again, indebted to Dr Paul Davies for the following simple proof
that (9) is indeed the exact value of n.

Let J = 1 if allele i is found in the sample; otherwise, .1, =0. It follows
that:

N
Ji

and
N

En= E EJ,.
1=1
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Since EJ, =the probability that allele i is found in the sample

EJ1= l—(l —2x1)m
so that

N
En= {l—(l—2x)m}.

An estimator of (8), "the average probability of an allele appearing in a
sample of size rn", if such an estimator can be found, will also estimate N
because

iN
En=Nx,{l—(l—2x1)m}

and En can be equated to the value of n from the sample.
Though any number of estimates of "the average probability of an allele

appearing" can be devised, two only will be considered here. The most
obvious estimator of (8) is:l

—{l—(l—f/m)m}

wheref is the number of times the ith allele occurred in the sample. Clearly,
to some extent the quantitiesf/m for the observed alleles only are overesti-
mates of the true value of 2xr Then N can be estimated from

n2IJ= . (10)
{l —(1 —f,/m)m}

This estimator of N will be referred to as E1.
A slightly more complicated estimator can be derived by the following

argument. A sample of m plants drawn from a population containing N
alleles will contain n of these alleles and not contain (N —n). Let the sum
of the frequencies of the latter be x/(l+x) and let w = (1 +x). The popula-
tion is assumed to be of infinite size so that sampling does not alter the
geflotype frequencies in the population. If the ith allele has occurred in the
sample f' times, an estimate of its frequency in the population is f/2mw.
Then an estimate of the average gene frequency in the population is:

— f/2mw= 1/nw.fl 1=1

Given w, this estimate should be biased upwards, on average, because the
sample will contain more of the high frequency alleles than the low frequency
ones. So a downwards biased estimate of the number of alleles in the
population, N, is given by nw. n can then be estimated from

n=wE{l—(l—f/mw)} (11)

by equating.En to n in equation (9) with substitution of our estimates of
x,. This expression can be solved for w and N estimated as nw. This estimator
will be referred to as E2.
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4. SIMULATIONS

Since it is not obvious how these estimators will perform in practice,
eight populations, which differed in the number and frequency of alleles
they contained, were simulated on the computer. Samples were then drawn
at random from these populations and E1, E2 and the maximum likelihood
estimate calculated for each. The means of these statistics over all samples
drawn from the same population gave an empirical estimate of their expected

(a)

(b)

aa
a
a
C

E
z

10

6

2

2 4 6 8 10 12 1

Number of occurrences

FIG. 2. Frequency distributions for runs 9(a) and 14(b) of the simulation investigation (see
table 2).
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E 12'z
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value. The inclusion of the maximum likelihood estimator in these tests
enables us to find out how bad this is when allele frequencies are unequal.

Between 1000 and 3000 samples of size 30 or 40 were drawn from each
population; populations were of size 4000 and contained either 10, 40 or
60 different S-alleles. In three of these populations, the alleles were, approxi-
mately, equally frequent (f 1/N); in a further three, these frequencies
were determined by the convenient method of equating f to 21/N(N+ 1);
and in the remaining pair of populations, the allele frequencies were
distributed as in figure 2 in an attempt to simulate the distributions found
in practice with the poppy data (Campbell and Lawrence, 198 lb; Lawrence
and O'Donnell, 1981). Further details of these simulations are given in
O'Donnell (1983).

There are five points worth making about the results obtained from these
simulations (table 2). First, the maximum likelihood (ML) and E2 estimators
appear to be virtually insensitive to the size of sample drawn from the
population; for E1, on the other hand, a marked improvement is obtained
by increasing sample size from 30 to 40 when the population contains a
realistic number of alleles (runs (10) and (11); and runs (12) and (13)).

TABLE 2

A comparison of the behaviour of the maximum likelihood (ML), E1 and E2 estimators by
repeated sampling from populations of size 4000 containing either 10, 40 or 60 different S-alleles

Run N f m
No. of

samples ML E1 E2

1 10 1/10 30 2000 10.000 l0l32 l0164

2 40 1000 10.000 1O•033 10066

3 1/55 30 1000 9586 10•054 10133

4 40 1000 9•765 10092 I0145

5 40 1/40 30 2000 40256 39522 46793
6 40 1000 40146 418l9 45908

7 i/820 30 3000 32•896 34•175 38765

8 40 1000 33521 36154 38892

9 fig. 2(a) 30 1000 30244 32641 37385

10 60 1/60 30 2000 60•636 51149 70•874

11 40 1000 60182 57180 70'402

12 1/1830 30 3000 48049 44'857 57030

13 40 2000 48•785 49543 57'768
14 fig. 2(b) 30 1000 40126 40443 49742

Second, when only 10 alleles are present in the population, there is little
to choose between the estimators, irrespective of whether the alleles are
equally frequent or not. This is, of course, as expected because when the
number of alleles in the population is, relative to the number sampled (2m),
as low as this, there is little need far statistical inference; however, the
results obtained for this extreme situation at least show that the estimators
behave as expected. Third, while, as expected the ML estimator gives
satisfactory estimates when the frequencies of the alleles in the population
are equal, these estimates are biased downwards when allele frequencies
are unequal; furthermore, we note that this bias is greatest for the two runs
((9) and (14)) where the frequency distributions of the alleles are similar
to those found in practice. Fourth, though the E1 estimates appear to be
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less biased than the ML estimates for populations containing either 10 or
40 alleles, the former appear to be as poor, if not worse, than the latter
when N =60. It is clear, therefore, that E1 cannot be regarded as a satisfac-
tory estimator over the range of conditions that have been simulated in
these tests. Lastly, though E2 always gives estimates which are less biased
than ML estimates when allele frequencies are unequal, it yields estimates
which are biased upwards when these frequencies are equal.

Taking these results as a whole, therefore, it is clear that neither E1 nor
E2 completely fulfil criterion (7); hence neither can be regarded as a
satisfactory replacement for the ML estimator. On the other hand, our
simulations suggest that E2 fulfils this criterion when allele frequencies are
unequal. Hence there is some justification for using E2, rather than the ML
estimator, when allele frequencies are known to be unequal; in all other
circumstances, however, in the present state of knowledge, it is better to
use the latter. Further investigation of estimators of the E2 type are necessary
both to improve their bias properties and to investigate their variance.

5. THE NUMBER OF ALLELES IN POPULATIONS OF P. RHOEAS

Estimates, N, of the number of S-alleles in populations of P. rhoeas
given by the E2 estimator are shown in table 3. Insofar that these estimates
are larger than those yielded by the ML method (table 1), they must be
regarded as more satisfactory. On the other hand, as is clear from the
simulations (table 2), estimates of N given by the E2 estimator are also

TABLE 3

Estimates of the number of S-alleles
in P. rhoeas populations obtained
from the E2 estimator (see text)

Population ;r

R102 42
R104 34
R106 38

biased downwards, though to a lesser extent, than the ML estimates. It
follows, therefore, that the estimates shown in table 3 should be regarded
as minimum estimates of the number of alleles in these populations. The
most reasonable conclusion that can be drawn from these results, therefore,
is that there are at least 40 different S-alleles in each of these populations,
though probably not very many more than this number.
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