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SUMMARY

In order to improve our understanding of the combined influence of mating
system components on genotypic structures in zygotes, it may be better to
consider the selective effects in each of the two sex functions separately. In this
paper, two diallelic selection models for plant populations with mixed self-
fertilization and random gametic fusion are considered: (A) Selection on the
production of free pollen (i.e., pollen not reserved for self-fertilization and thus
subject to competition), and (B) selection on the production of ovules (all of
which are fertilized). It is well known that sexually asymmetrical fertility selection
produces a heterozygotic excess, whereas self-fertilization generally leads to a
homozygotic excess relative to Hardy—Weinberg proportions. The combined
influence of the two factors is investigated for the diallelic case with special
emphasis on three topics: (i) Estimation of limits for the amount of genotypic
equilibrium deviations from Hardy-Weinberg proportions, (ii) determination
and illustration of the location of genotypic equilibria, and (iii) conditions for
protectedness of polymorphisms and alleles. With respect to these aspects, the
models A and B are compared with the classical symmetrical fertility model.

The results and figures serve to interpret the combined influence of fertility
selection and partial self-fertilization on zygotic genotypic structures. In
addition, the frequently used argument that in predominantly self-fertilizing
organisms only strong overdominance is capable of constituting a polymorphism
turns out to require modification.

1. INTRODUCTION

THE use of biochemical techniques to determine genotypic structures in
zygotic and adult plant populations has become a valuable means of
distinguishing between different selective forces (Brown, 1979). Assuming
a population reproducing with nonoverlapping generations, the comparison
of the genotypic structure of the adults during the reproductive phase with
that of their offspring generally neglects the influence of selection for
viability. Moreover, this demonstrates the effect of selection acting through
reproduction with differential contributions of adult genotypes to the next
generation. Nevertheless in the study of natural plant populations it seems
to be most unrealistic to try to observe and describe more than just the
main reproductive components of the breeding system which lead to a
concrete measurable zygotic structure. In this paper we confine our con-
siderations to a combination of two particular reproductive components of
a monoecious plant population and to a characterization of their influence
on zygotic genotypic structures. These reproductive components are:
differential production of pollen or ovules and mixed self-fertilization and
random gametic fusion.
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Let us consider the first reproductive component. If the allelic structures
are the same in the female and the male gametic pools, then under complete
random fusion of gametes the zygotic population will show Hardy—
Weinberg proportions. However, the possibility of having the same allelic
distribution in pollen as in ovules is already excluded if genotypes exhibit
differential production of female or of male gametes. It has been shown
that differential production of ovules and pollen leads immediately to an
excess of heterozygotes in the zygotes (Wallace, 1958; Purser, 1966; Ziehe,
1981; Ziehe and Gregorius, 1981). To illustrate this let one homozygote
produce predominantly ovules and the other homozygote predominantly
pollen; the offspring zygotes will be mainly heterozygous. But as already
shown by Ziehe and Gregorius (1981), extreme deviation from Hardy—
Weinberg proportions can be maintained over the generations only if the
genotypical gamete production varies extremely asymmetrically in the
sexes. With differential production only of pollen or only of ovules, Hardy—
Weinberg equilibria even can result (Ziehe, 1981).

The second reproductive component which will be investigated is partial
self-fertilization. It has often been analytically combined with viability or
sexually symmetrical fertility selection. Recurrence equations and the cor-
responding conditions for the computation of equilibria may be found in
Hayman (1953), Lewontin (1958), Workman and Jam (1966), Jam and
Workman (1967), Woehrmann and Lange (1970) and for the multiallelic
case in Weir (1970). Several numerical examples for the development of
genotypic structures are presented in Huehn (1979). Partial self-fertilization
generally leads to a homozygotic excess which has been well-quantified in
the case of no selection. The introduction of selection to the model consider-
ably complicates the immediate estimation of the amount of homozygotic
excess in zygotes after several generations or at equilibrium.

The combined influence of partial self-fertilization with differential
pollen or ovule production on the zygotic genotypic array has been already
investigated in a previous paper (Ziehe, 1982). The main aspects which
will be considered here are the heterozygotic deviation from the corres-
ponding Hardy—Weinberg frequency in polymorphic equilibria as a long-
term evolutionary effect and criteria for obtaining an idea of the genotypical
location of diallelic polymorphic equilibria. Finally, conditions are presen-
ted which guarantee the maintenance of an allelic polymorphism.

The effects of differential pollen and ovule production are compared
with each other and with the results for models with symmetrical viability
or fertility selection and partial self-fertilization.

2. THE MODELS AND NOTATIONS

The basic model specified in the present paper is taken from Gregorius
and Ross (1981) and refers to an effectively infinite population of diploid
monoecious plants reproducing in nonoverlapping generations. A gene
locus with alleles A1 and A2 is considered. Every individual of (unordered)
genotype A,A1 produces a number of ovules from which a proportion
o is reserved for self-fertilization and fuses with pollen from the same
individual. The remaining part of the pollen, j, is called "free pollen"
and enters the free pollen pooi of the population. If pollen production is
considerably higher than the ovule production, as is generally valid for
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most plant populations, then free pollen production and total pollen produc-
tion of an individual do not differ appreciably. Every ovule will be fertilized.
It is assumed that the probability of fertilizing one of those ovules which
are not reserved for self-fertilization is the same for every pollen grain of
the free pollen pooi (partially random fusion of gametes).

Two models will be discussed in a comprehensive analytical manner
and compared with the classical fertility selection model (model C). Model
A contains only genotypically differential production of free pollen; model
B genotypically differential production of ovules. The parameters for the
diallelic case are listed in table 1.

The frequency of those zygotes which contain the alleles A and A1 shall
be denoted by P, (unordered genotypic frequencies) and the allelic
frequencies of A1 and A2 by pi and P2, respectively. It will prove to be
useful to introduce the average adult allelic contributions 11, and of the
allele A, to free pollen and ovule production, respectively. The definitions
are valid only if O<Pi, P2<l:

— p11 P12/2 — P22 _____111=1.111+ 1.112, p2=/.L22+
P1 Pi P2 P2

and

— P11 P12/2 — P22 P12/24'12, 2=22+ 4'12.
P1 P1 P2 P2

The average productions and of pollen and ovules for O<p1, P2< 1 are

1L=P1I.11+P2#.12 and q5=p1+p22.
Parameters denoting the succeeding generation are indicated by primes.

3. MODEL A: SELECTION ON POLLEN PRODUCTION

(i) The recurrence equations

The recurrence equations connecting the zygotic genotypic structures
over the generations under selection in free pollen production read (com-
pare e.g., Gregorius and Ross, 1981)

P1 4

P12 =o+2(1_ff)p1p2(1t1L2)2 2
and

P22 =(P22÷ a)+(1_o.)p22 1.

Considering the heterozygous zygotic frequency of the subsequent gen-
eration, we know (Ziehe, 1982)

I P12 1—cr\ ,
P2o---j-+2(j--—)P1P2
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Thus, even if heterozygotes which again produce heterozygotes by self-
fertilization are not present in the preceding generation, the total heterozy-
gotic frequency after the first generation will lie on or above a reduced
Hardy—Weinberg parabola calculated from 2p1p2((l —cr)/(1 + cr)). Definin-
ing the panmictic index I, by 4 = P12/2p1p2, this corresponds to 4 greater
than (1 —ff)/(l +cr) after the first generation. Using Wright's fixation index
F, F = 1—4, as a measure for the departure from Hardy—Weinberg propor-
tions, the resulting genotypic structures show F 2a/(1 —a-) after one
generation at the latest. In the special case of complete random fusion of
the gametes produced (a- = 0), this is equivalent to the wellknown heterozy-
gotic excess relative to Hardy—Weinberg proportions for selection acting
only in one sex (Purser, 1966; Ziehe, 1981; Ziehe and Gregorius, 1981).

On the other hand, Ziehe (1982) presents an upper limit for the
panmictic index namely I,, 2/(1 + a-). This is equivalent to a lower limit
for the fixation index: F —(1—a-)/ (1 + a-). Examples of selection regimes
which strongly favour the pollen production of one homozygote in fact
demonstrate that for a- =0 an arbitrarily high level of offspring hetero-
zygosity may be reached provided a suitable adult genotypic structure is
chosen.

(ii) The change in allelic frequencies

From the above genotypic recurrence equations, the allelic recurrence
equation for Pi reduces to

/1 1a\ 11+a- l—oliP1 TPi+(lT)Pi+)=Pi[
Thus the direction of change for all allelic frequencies is independent of
o• and only depends on whether is less than, equal to or greater than
l. In particular, the occurrence of allelic constancy between two successive
generations (p =Pi and p =P2) is equivalent to = 112 = ji. A discussion
of the set of genotypic frequencies with = = ji is given in Ziehe (1981).

Special cases with globally describable dynamics are:
(a) The case of no selection (p11 = = /L22). For every genotypic

structure except the fixation points we have ji i =/.12
=l and therefore no

allelic change (compare Hayman, 1953).
(b) The intermediate cases l.L11<I.L12</.L22 and 22<j2<p11. The

sole point for which /.l1 =1.12= ji is the genotypic structure consisting only
of heterozygous individuals. Thus Pi changes, if at all, consistently in one
direction until fixation of that allele occurs for which the homozygotic
genotype has the highest pollen production.

(c) The case of allelic selective symmetry 11 =1L22 i- 12. Here / =
/.L2 i is valid if either P1 =P2 = 0.5 or there exists no heterozygous
individual (P12 =0). With overdominance, all genotypic structures (except
fixation points) converge to a polymorphic equilibrium in j3 =05 and
P12 =(1—a-)/(2—u). In the case of underdominance, convergence is to
fixation of that allele with the higher initial allelic frequency (see Appendix
1), except from Pi =0-5. For initial Pi =05, P1 remains constant and P12
again converges to P12 =(1 —a-)/(2—a-).

In all other cases, a graphical description of the set of genotypic frequen-
cies for which 111 = /.2 =11 (not defined for fixation points) can be presented
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by plotting the heterozygotic frequency versus p1 in a DeFinetti diagram.
The associated function is

where

1yP12 = 2P1P2 l—Pi(l+y)'

J.L12-(L22

/L12 —tt11

(*)

measures the selective asymmetry between the homozygous genotypes
relative to the heterozygous. It is a monotone function (increasing for
F.L12IL22<IL11 and 11<22tj2and decreasing for j211<I22 and
#L22 < iL ii 12), connecting one of the fixation points with the structure
of a totally heterozygous population. Examples for several fixed values of
y are illustrated in fig. 1.

2=1
Fio. 1.—The location of equilibria for model A,

parameter y and the self-fertilization rate a.

(iii) The location of nontrivial equilibria

If in addition to the allelic constancy the heterozygotic frequency does
not change, an equilibrium is reached. Provided that iii =t12 = ji, the

depending on the selective asymmetry
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equality P2 =P12 is valid only if (resulting from the recurrence equation)

1—cr
P12=2p1p2 (**)

1—(cr/2)

Thus the deficiency of heterozygotes at equilibrium is independent of the
selection regime on free pollen and refers to the panmictic index 4=
(1—cr)/[1—(cr/2)] or the fixation index F=o-/(2—cr). This is therefore
the same panmictic index as for a system without selection (compare
Hayman 1953): Selection in pollen production does not affect the Hardy—
Weinberg deficiency at equilibrium. In the special case of o- =0, this implies
Hardy—Weinberg equilibria even in the presence of selection in pollen
production, a fact which is already known. The graphs of genotypic frequen-
cies with (**) are illustrated as dotted lines (depending on cr) in fig. 1.

A nontrivial equilibrium occurs at the intersection of the lines described
by (*) and (**), which reflect the selection ('y-curve) and the self-fertilization
influence (cr-curve), respectively. Fig. 1 therefore shows the location of
genotypic equilibria under the combined influences. For a fixed selection
regime represented by the parameter y and for increasing cr, the equilibrium
point moves downwards along the y-line until it reaches the fixation point.

If a nontrivial equilibrium exists, it exhibits the allelic frequency

(l—cr)—(l—'y)(l—cr/2)Pi=
(1+ y)(l —

As is suggested in fig. 1, a polymorphic intersection need not exist. Assuming
y<l, there is no nontrivial equilibrium if y<o-/(2—cr); for y>l none
exists if y > (2—

The case y = 1 of allelic selective symmetry (phi = /.L22 12.12, case (c)
of the preceding section) always produces a nontrivial equilibrium.

(iv) Conditions for protectedness of polymorphisms

The last section for the model of differential pollen production and
partial self-fertilization refers to conditions under which no allele can be
lost within the population or even stay at an arbitrarily low frequency for
an indefinite number of generations, provided all genotypes are present
initially. This in particular implies instability of the fixation points. Condi-
tions for allelic protectedness for a more general model are presented in
Gregorius (1982a) (compare Appendix 2) and will be applied to the present
model. We assume that selection acts on pollen production such that ii,

12 and 22 are not equal; otherwise there is no allelic change.
Applying both inequalities of Appendix 2 to this model, they reduce

to a single condition for the protection of A1:

(1 —cr)(L12+c1j>(i —)1222.

To obtain the condition for protectedness of 2, the indices 1 and 2
must be interchanged.
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Making use of the classification into overdominant, underdominant and
intermediate or dominant pollen production, A1 for example is protected
if

o /
(a)

(b)
2—cr 1+7

(c) i.22ILl2.c1l and not all equal.

It should be mentioned that the conditions for each of the three cases
depend only on the asymmetry coefficient y and the self-fertilization
rate o•.

Both alleles are protected simultaneously and thus both fixation points
are unstable in the case of overdominance when in addition

<y <,2-cr cr

which places a restriction on the selective asymmetry coefficient.
Thus for overdominance, the existence of a nontrivial equilibrium is

combined with a protected polymorphism and unstable fixation points. This
in fact is no proof for stability of or even global convergence to the
polymorphic equilibrium, both resulting in hardly surveyable algebraic
expressions. But up to now, all computer simulations of genotypic trajec-
tories confirm the hypothesis of convergence. For the special case o =0
but arbitrary pollen production, the gloval convergence to (Hardy—Wein-
berg) equilibria has already been shown (Ziehe, 1981).

4. MODEL B: SELECTION ON OVULE PRODUCTION

(i) The recurrence equations

For the alternative model of selection on ovule production, the recur-
rence equations have already been determined by Workman and Jam
(1966). Using our notation, we have

fq5iiPii+12Pi2/4\ 2

P11=cr
-

)+(l—cr)Pi--
12P12/2 ______P12o +2(l—cr)p1p2 2q5 ),

and

=cr("P12l124) +(1 —cr)p for 0 p1 1.

A previous paper (Ziehe, 1982) contains the derivaticn of a lower limit
for the heterozygotic frequency after one generation at the latest,

P2 +2(icr)PP
which leads again to a panmictic index greater than (1—cr)/(1+o-) or a
fixation index less than 2cr/(1 —cr).
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Again 2/(1 +o) is an upper limit for the panmictic index, —(1 —o-)/(1 +
cr) a lower limit for the fixation index (Ziehe, 1982).

(ii) The change in allelic frequencies

The allelic recurrence equation reads

& /1 &\ 11+o& 1—T
Pi

for Therefore here again p =p if and only if q5 =42= indepen-
dently of the rate of self-fertilization. Thus denoting the selective asymmetry
coefficient as before by y, y = (4'12—4'22)/(4'12—4'11), we obtain the same
analytic structure as in model A for the set of genotypic frequencies with
allelic constancy between two successive generations (namely the y-curves
of fig. 1).

(iii) The location of equilibria

The determination of the equilibria by eguating heterozygotic frequen-
cies over the generations under 4'i =4'2 =4' leads to

I 1(T
P12 = 2P1P2 Li — (a/2)4i12/4'

The frequency-dependence of the equilibrium panmictic index may be
eliminated, which leads to the complicated formula for the equilibrium
allelic frequencies presented in Workman and Jam (1966). These do not
provide any clues as to the location of the equilibrium. Nevertheless, it is
possible to give structurally simple limits for the panmictic index which are
frequency-independent.

(a) Heterozygotic advantage: 4'12 4'ii, 022

Under heterozygotic advantage, we have 4'124 for every genotypic
structure and therefore the panmictic index 4 = (1 —o-)/[1 —(a-/2)4'12/4']
is always greater than or equal to (1 —o)/(1 —o2). -

Assuming a genotype structure with 01= 02 = 4' lying above Hardy—
Weinberg proportions (P12 > 2p1p2), we have

4'=4'224'12P1&24'12 forp1
and

O 0P/2 012>(1—P1)O12>O12 forp1.

Thus 24'12. But this is compatible only with an equilibrium panmictic
index 4 less than or equal to 1, which contradicts the assumption of an
equilibrium located above Hardy—Weinberg frequencies. Thus an equili-
brium under selection only on ovules cannot exceed the upper limit of
Hardy—Weinberg proportions.



280 M. ZIEHE

(b) Heterozygotic disadvantage: 4)12 4)11, 4)12

Since 4)124', the panmictic index I, =(1—cr)/(1—(u/2)(q5i2/))
possess the upper limit (l—o)/(l--o-/2). On the other side, (1—cr) is
evidently a lower limit for the equilibrium panmictic index.

The equilibrium location is as follows. Provided there is selection,
nontrivial equilibria can only exist in the cases described of heterozygotic
advantage or disadvantage.

For heterozygotic advantage (4)12 4'ii, 4)22) an equilibrium lies on the
respective y-curve of fig. 1 between its intersection with the Hardy—Wein-
berg parabola and its intersection with the curve of the panmictic index
(1 —cr)/(1 —cr/2) (see fig. 1). For a large heterozygote advantage, Hardy—
Weinberg proportions approximately may be reached. For heterozygotic
disadvantage (4)124'ii, 4)22) an equilibrium lies on the respective y-curve
between its intersection with the curve of the panmictic index (1 —cr)/(1 —
cr12) and that of (1—cr). Clearly, if both intersections occur in the fixation
point, there is no possibility for a polymorphic equilibrium to exist.

(iv) Conditions for protectedness of polymorphisms

An application of the inequalities of Appendix 2 to a model with only
differential ovule production (and thus = ) and o 1 leads to protection
of A1 (and thus in particular to instability of the fixation point with Pi =0)
if

2 4)22 \4)22 1 \ 4)22/ \ 4)22

This is fulfilled if

(a) 4)12>4)11,4)22 and either

(i) qSjiq522or
(ii) 4)22<4)11 and

cr /. 27 \
—cr(4)ii/4)22) y.e. <1+7(4)11/4)22))'

or if

(b) &2<q5nc51i and
U /. 27 \

<2—cr(4)11/4)22) y.e. cr>1 +7(4)11/4)22))'
or if

(c) q522412q51j and not all equal.

The diallelic polymorphism (and thus each of the alleles) is protected
in the case of overdominance when in additiOn

4)11q522 and y>
2 —cr(4)11/4)22)

or

4)224)11 and
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Evidently, the conditions of model A for selection in pollen production,
namely overdominance and o/(2 —o) < y <(2— u)/o-, are sufficient for
polymorphism protectedness in this model. For an illustration using phase
diagrams compare fig. 4.

5. A NOTE ON SYMMETRICAL FERTILITY SELECTION AND VIABILITY
SELECTION (MODEL C)

Symmetrical fertility selection with coefficients s = = p., (or viability
selection with a survival probability s) of the genotype AA1 yields the
following recurrence equation for the heterozygous zygote frequency (pro-
vided 1):

S12 P12 S1S2
P12 =cr——+2(l—cr)plp2--j--s 2 s2

cr-- +2(1—cr)pp,s2
where

=sj ÷P12/2 s12, =Ps/s (i = 1,2)
Pi Pi

and

S JlSj+f2S2.

Thus after one generation at the latest, the panmictic index 4 is greater
than (1— a-). Additionally, as proven in Ziehe (1982), a homozygotic excess
relative to Hardy—Weinberg proportions occurs in the offspring generation,
which implies 4 <1 after one generation at the latest.

In equilibrium we have the same structure as for selection in ovule
production, as already shown by Workman and Jam (1966) (= S2 =
and panmictic index (1 —a-)/(1 — (o-/2)(s12/fl)).

Therefore the discussion of the location of equilibria is analogous to
that for model B.

The analysis of protectedness of alleles and the diallelic polymorphism
leads analytically to the same conditions as for model B, replacing 4,, by
s,. The corresponding condition for a protected polymorphism coincides
with that derived by Kimura and Ohta (1971) regarding instability of both
fixation points simultaneously.

6. A COMPARISON OF THE MODELS AND A SUMMARY OF THE RESULTS

In the preceding sections, several selection models for partially self-
fertilizing plant populations were considered. Limits for the deviations from
Hardy—Weinberg proportions, depending in the last analysis only on the
rate a- of self-fertilization, were presented in terms of panmictic and fixation
indices.

Details and additional results for symmetrical fertility selection are
recapitulated in table 2.
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Fio. 2.—Oenotypic trajectories for eight different starting points under two selection regimes
and o= O6. The dotted lines refer to selection on ovule production with 4) O'8,
4)12 = 1 4, 4)22= O9, the solid lines to selection on production of free pollen with= O8,

= 1•4, /.L22 = 09. The figure also contains the y-curve with the equilibria.

The limits for the panmictic and fixation indices in the offspring gener-
ation are valid for all selection regimes which refer to the respective
selection model. Numerical simulations show that if the intensity of selection
is weak (small differences in gamete production relative to their genotypic
mean), then the ultimate panmictic index approximately will be reached
after only a few generations, whereas the allelic frequencies may change
slowly. Fig. 2 contains an example which illustrates this.

Referring to the discussion about the change in allelic frequencies, we
arrive at the following results:

Result 1: The analytical investigations of the selection models presented
prove that the direction of allelic change from the parental generation to
the offspring is independent of the rate of self-fertilization, o. The regions
of increasing or decreasing allelic frequency are separated by the y-curves
of fig. 1. Moreover, these y-curves are constructed in an analytically
equivalent manner for all selection models under consideration, using only
the selection coefficients.

A broader discussion of the importance of these y-curves is presented
in Gregorius (1982b). Since equilibria must lie on the respective y-curve,
the limitations of the equilibrium panmictic indices of table 2 yield a useful
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localization of polymorphic equilibria:
Result 2: An equilibrium point for model A with differential free pollen

production occurs at the intersection of the respective y-curve and the
oS-parabola in fig. 1. Equilibria for model B of differential ovule production
and for models of symmetrical fertility selection are located on the segment
of the y-curve between the intersections with the Hardy—Weinberg parabola
and the o-parabola in the case of overdominance in the selection
coefficients. They are located on the y-curve below the intersection with
the or-parabola for underdominance.

Therefore for 0 <o <1,a selection regime with heterozygotic advantage
for the last-mentioned models leads to a higher heterozygote frequency in
equilibrium than the same selection regime for differential production of
free pollen. For extreme heterozygotic advantage under symmetrical fer-
tility selection or differential ovule production, even Hardy—Weinberg
proportions may be reached. The amount of equilibrium heterozygotic
advantage or disadvantage for models with allelic selective symmetry ('y 1)
is illustrated in fig. 3. It should be emphasized that convergence to this
equilibrium occurs for overdominance. The corresponding equilibrium
formula is taken from Appendix 1. d measures the relative additional
advantage or disadvantage of the heterozygotic selection coefficient com-
pared with the homozygote; for example for model C: s12= (1 +d)SHOm.

FIG. 3.—Heterozygote equilibrium frequency for models with allelic selective symmetry and
thus allelic equilibrium frequency j = O'5. (A) refers to differential pollen production
with .t11 = 1L22 = LHom and d = (1L12 — $Hnm)/iLHnm, (B) to differential ovule production
with = 422 = bHom and d= (41— 4'Hom)/4'Ho,-, and (C) to differential sexually sym-
metrical viability or fertility selection with S11 = = 5Hom andd = (S12 — SHOm)/SHom.
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Overdominance has proved to be a necessary condition for simultaneous
protectedness of both alleles, and thus of the polymorphism, in all selection
models under consideration.

Result 3: In the case of differential pollen production, the protectedness
of both alleles (and thus instability of their fixation points and existence
of a polymorphic equilibrium) requires overdominance and an increasing
symmetry in homozygotic disadvantage (y -* 1) for an increasing rate of
self-fertilization (cr-* 1). In the case of differential ovule production or
symmetrical fertility selection the conditions for the protectedness of the
polymorphism permit more asymmetry in homozygotic disadvantage for
weak overdominance. Strong overdominance as with q5, 4)22<
(1 —0/2)4)i2 or s11, s22 <(1 —cr/2)si2, respectively, guarantees a protected
polymorphism without restrictions.

The exact conditions for protectedness of polymorphism are summar-
ized in table 3 and illustrated in fig. 4.

Several authors in recent articles have adopted the claim of Kimura
and Ohta (1971), who stated for the symmetrical fertility selection model
that "overdominance cannot be a major mechanism for polymorphism in
predominantly self-fertilizing organisms, unless the overdominance is very
strong". It has been shown in this paper that, in the case of overdominance,
those conditions for the protectedness of the polymorphism and the
existence of a polymorphic equilibrium for model A of differential free
pollen production are sufficient conditions for each of the two other selec-
tion models, if we assume the same selection coefficients. Figs. 1 and 4
immediately show that for a high rate of self-fertilization and overdomin-
ance a polymorphic equilibrium for model A exists and the polymorphism
is protected if y is near to 1. In the extreme case y 1 (p. =p22<12),
a polymorphic equilibrium exists and the polymorphism is protected for
every o <1. Moreover in this special case, as proved in Appendix 1, all
genotypic frequencies except from fixation converge to the polymorphic
equilibrium. Thus for predominantly self-fertilizing organisms the main
mechanism for establishing polymorphisms for selection models with over-
dominance is not only the amount of heterozygotic advantage, but also the
symmetry in homozygotic disadvantage expressed as small deviations of y
from 1.

Acknowledgements.—These investigations were partially supported by a grant
from the Deutsche Forschungsgerneinschaft. The author is indebted to H.-R. Gregorius
for helpful advice, to F. Gillet for the drawings and to B. Peter for her patience in typing
the manuscript.

REFERENCES

BROWN, A. H. D. 1979. Enzyme polymorphism in plant populations. Theoretical Population
Biology, 15, 1—42.

GREGORIUS, H.-R. 1982b. The relationship between genic and genotypic fitnesses in diploid
Protectedness of a biallelic polymorphism. Journal of Theoretical Biology, in print.

GREGORIUs, H.-R. 1982b. The relationship between genic and genotypic fitnesses in diploid
populations. 96, 689—705 evolutionary theory, in press.

GREGORIUS, H-R., AND ROSS. M. D. 1981. Selection in plant populations of effectively
infinite size: I. Realized genotypic fitnesses. MathematicalBiosciences, 54, 291—307.

HAYMAN, B. 1. 1953. Mixed sellIng and random mating when homozygotes are at a disadvan-
tage. Heredity, 7, 185—192.



288 M. ZIEHE

HUEHN. M. 1980. Equilibria of populations with selection and mixed selfing and random
mating—with some implications for plant breeding. Ann. Amélior. Plantes, 30, 45—51.

JAIN. S. K., AND WORKMAN, P. L. 1967. Generalized F-statistics and the theory of inbreeding
and selection. Nature, 214, 674—678.

KIMURA. M., AND OHTA. T. 1971. Theoretical aspects of population genetics. Princeton
University Press, Princeton, N.J.

LEWONTIN, R. c. 1958. A general method for investigating the equilibrium of gene frequency
in a population. Genetics, 43, 42 1—433.

PROUT, T. 1968. Sufficient conditions for multiple niche polymorphisms. American Naturalist,
102, 493—496.

PURSER, A. F. 1966. Increase in heterozygote frequency with differential fertility. Heredity,
21, 322—347.

WALLACE, B. 1958. The comparison of observed and calculated zygotic distributions. Evol-
ution, 12, 113—115.

WEIR. B. S. 1970. Equilibria under inbreeding and selection. Genetics, 65, 371—378.
WOEHRMANN. K., AND LANGE, p 1970. Untersuchungen zur Wechselwirkung von Selektion

und Selbstrungsrate auf das genetische Gleichgewicht unter besonderer Berucksichtigung
tetraploider Populationen. II. Modell für diploide Populationen. Theoretical and Applied
Genetics, 40, 289—295.

WORKMAN, P. L., AND JAIN. S. K. 1966. Zygotic selection under mixed random mating and
self-fertilization: Theory and problems of estimation. Genetics, 54, 159—17 1.

ZIEHE, M. 1981. Population trajectories for single locus additive fecundity selection and
related selection models. Journal of Mathematical Biology, 11, 33—43.

ZIEHE. M. 1982. Genotypic frequencies of the offspring generation under selection on female
or male gamete production in partially self-fertilizing plant populations. Gottingen
Research Notes in Forest Genetics, 5, in press.

ZIEHE, M., AND GREGORIUS. H.-R. 1981. Deviations of genotypic structures from Hardy—
Weinberg proportions under random mating and differential selection between the sexes.
Genetics, 98, 215—230.

APPENDIX 1

Convergence of genotypic structures

(a) Selection on pollen production with zii t22<i-t12 and o 1.
Denoting ii, 1L22 by (LHorn, the allelic frequency deviation of A from

05 shows the following development over the generations:

(p —0.5)= [±+(1 t7)lLHom]( —0.5).2 2
/.LHom = ji, which is equivalent to P12 =0, is a possible constellation only
for starting points. Thus except from fixation, we have P12 0 and ILHom < ji.
after one generation at the latest. But this implies

2 2 t
so that (p1—O'5) is either a monotone decreasing (for OS<pi) or a
monotone increasing (for Ps <0.5) or a constant (for Ps =0.5) sequence
over the generations. Thus convergence of p and P2 to 05 follows and
the limit set of genotypic trajectories except from fixation fulfils fi = I2 =
05. Considering those structures with Pi =P2= O•5, the heterozygote
frequency changes in the following way:

o i—a
P12 P12+—---,

which leads to monotone convergence to an equilibrium in (1— a)/(2 —a).



FERTILITY SELECTION AND SELF-FERTILIZATION 289

Therefore except from fixation all genotypic frequencies converge to =
(2—o)/(1—o-)with1=j2=0.5.

(b) Selection on ovule production with c/) = '/)22 <412 ando 1.
For this model

(p—0•5) = [-+4-!] (Pi—05),

where '/)Hom = Q5i = '/'22. As with (a) it is possible to show the convergence
of allelic frequencies of both alleles to 05. However, for this model we have

p2 ip12÷!L forj1=2=05.
There is exactly one equilibrium point with j= 05 and P2 = P12. Defining
d = ('/)12/)Hom)/q5Hom, this equilibrium reads

P12 = [(d + o —2) + J(d + o —2)2+ 8(1 — r)d]/4d.

It is easy to prove the monotone convergence of P12 to P12 for j3 =05.
(c) Differential viability and fertility selection symmetrical in the sexes,

with (SHom=)S11=522<512 and 1.
Now(p O5)=(SHom/) (p—O5), and for p1 =p2=05

A°2 2s 2
The proof of convergence uses the same arguments as presented in (b).
The equilibrium is the same as for (b) with d = (s12 —

SHOm)/SHOm.

APPENDIX 2

Protectedness of alleles

The following definition of protectedness of an allele (compare Prout,
1968) as an instability property of its fixation state is directly taken from
Gregorius (1982a):

An allele is called protected if it cannot be lost from any state of the
population where all possible genotypes are present with positive frequen-
cies; moreover it is required that the allele cannot stay for an indefinite
number of generations at arbitrarily low frequencies. A diallelic polymorph-
ism is called protected if both alleles are protected. This implies in particular
the instability of both fixation points.

The analysis investigates the behaviour of the multiplication rate p /pj
near the fixation state of A,.

An application of the result of Gregorius (1982a) to a one-locus diallelic
model with differential free pollen and ovule production but with equal
self-fertilization rates for all genotypes leads to the following conditions
for protectedness. A1 is protected, if

L!L4tLL1\>(1..2 /)22 2 22 2 '/)22 1 \ '/)22) 2 1L22 2 422
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or if

-+----
'p22 2 1L22 2 4'22

For the protectedness of A2, interchange the indices 1 and 2.
The special case = 1 of an ob1igator' self-fertilizing organism leads

to a protected polymorphism if 4, Ø22<4j2.


	ZYGOTIC GENOTYPIC FREQUENCIES UNDER SELECTION ON FEMALE OR MALE GAMETE PRODUCTION IN PARTIALLY SELF-FERTILIZING PLANT POPULATIONS
	SUMMARY
	1. INTRODUCTION
	2. THE MODELS AND NOTATIONS
	3. MODEL A: SELECTION ON POLLEN PRODUCTION
	4. MODEL B: SELECTION ON OVULE PRODUCTION
	5. A NOTE ON SYMMETRICAL FERTILITY SELECTION AND VIABILITY SELECTION (MODEL C)
	6. A COMPARISON OF THE MODELS AND A SUMMARY OF THE RESULTS
	REFERENCES


