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SUMMARY

A mixed mating model for many unlinked loci is described. A procedure for
estimation of the model parameters (outcrossing rate and gene frequencies),
based on a multilocus maximum likelihood equation, is discussed and analyzed
for bias, variance, and robustness. Genotypic data from families of known or
unknown maternal parentage, or data from progenies of known maternal paren-
tage, are used for estimation. The procedure is applicable to dominant or
co-dominant Mendelian genes with two or three alleles per locus, and should
be particularly useful in studies where the effort in scoring more loci is less than
the effort in scoring more progeny. Variances of the multilocus estimates of
outcrossing rate and pollen pool gene frequencies decrease when more loci are
included in the estimation. Monte Carlo simulations showed the estimates to
be unbiased when model assumptions are not violated, but the bias introduced
by various violations is reduced when more loci are included in the estimate.
Often the variance of a three or four locus estimate closely approaches the
minimum variance possible (the variance of an estimate using infinitely many
loci), setting a practical limit to the number of loci needed for a nearly minimum
variance estimate. An example from some work on Limnanthes is presented
to illustrate the use of multilocus model and its fit to data from natural popula-
tions.

1. INTRODUCTION

PLANT breeders, ecologists, and evolutionists have been generally inter-
ested in characterising the breeding system of plant species in terms of the
mixed selfing and random mating model, wherein a certain proportion of
zygotes are derived from self-fertilization and the remaining derived from
random outcrossing, each generation. The breeding system fundamentally
affects the genetic structure and dynamics of populations, and proper
estimates of the outcrossing rates are often needed for evaluating various
hypotheses concerning the effects of breeding systems, as well as for
planning breeding programmes. In this paper, we use multilocus theory
to develop a model and statistical procedure for the estimation of outcross-
ing rate and gene frequencies using the simultaneous segregation of alleles
at many loci, and evaluate some statistical properties of this estimator.
The single locus version of estimation procedure developed in this paper
traces back to the work of Fyfe and Bailey (1951) who also used the
maximum likelihood method, based on fitting the observed proportions of
genotypes descended from a known maternal genotype with the proportions
expected under a mixed mating model. In this model, progenies of each
maternal genotype represent a genetic array derived from ovules that
outcross with probability ¢ to a pollen pool with gene frequency p, and
self-fertilize with probability (1 —¢). As both ¢ and p are unknown, the two
35
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estimates must be determined simultaneously. Genetic changes due to
mutation or selection following fertilization, as well as any assortative
mating or variability in pollen pool frequencies, are assumed to be absent.
It is sufficient to bulk together progenies descended from all maternal
parents of the same known genotype; Jain and Marshall (1967) described
such an estimation procedure using the bulked seed lots of recessive and
dominant classes.

Using electrophoresis, many segregating loci with co-dominant alleles
can often be found in a population, and an increase in the power and
versatility of estimation procedures is possible. However, Brown and Allard
(1970) described the difficulty in electrophoretically assaying both the
maternal parent and its progeny, since an allele is frequently expressed only
at certain development stages, and seedling assays often disallow sampled
plants to be saved for producing seed progeny. Therefore, Brown and
Allard (1970) used the genotypic progeny array of each family to infer the
maternal genotype of that family; this requires a sufficiently large family size
to distinguish between the alternative segregation patterns of each possible
maternal parent (see Brown, 1975). Since the segregation pattern of each
maternal genotype depends on the outcrossing rate and pollen gene
frequencies, and the solution of the likelihood equations for outcrossing rate
(f)and gene frequency (§) depend on the inferred maternal genotypes, their
procedure became an iterative two-step process, in which the most likely
maternal parent for each family is inferred, thus allowing estimates of ¢ and
p. Clegg, Kahler and Allard (1978) modified this procedure by including all
the possible maternal genotypes of a family, weighted by their relative
likelihoods, in the calculations (for a brief survey of various single locus
models available for estimating outcrossing rate, see Jain 1979).

Vasek (1968) used progenies of genotypes recessive at two diallelic loci
for an estimation of outcrossing; an appendix gave the 24 equations, worked
out by Timothy Prout, describing the expected progeny ratios of the nine
two-locus maternal genotypes. More recently, Brown, Zohary and Nevo
(1978) used n-locus data for outcrossing estimation in a predominantly
self-pollinated plant population. Their approach is an approximate multi-
locus extension of the method of Allard, Kahler and Weir (1972), an
estimation procedure suitable only for organisms with low outcrossing rates.
The estimator described here is a direct multilocus extension of the single
locus estimation models using progeny arrays, utilizing a mathematical
approach using matrices which we find more tractable even for the single
locus case. We note that similar approaches to the multilocus problems in
population genetics are currently of interest (Roux, 1974; Karlin and
Liberman, 1979).

2. THE PROBABILITY MODEL

The mixed mating model, with » unlinked loci, uses a probability
transition matrix whose ijth element is the probability of observing offspring
genotype i given maternal parent genotype j; these elements are a function
of outcrossing rate and pollen gene frequencies. The matrix is postmulti-
plied by a column vector of maternal genotype frequencies to give offspring
frequencies. The model is constructed here for the case of two co-dominant
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alleles at each of the » unlinked loci; other cases are noted in a later section
of this paper.

We define
1 L0 pe p/2 0
S$.=10 % 01, T, =| q« % Dr {»
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where p, and gx(=1—py) are allelic frequencies (alleles symbolized by A,
and ag) in the pollen pool, and fi1 4, f.«, and f5 are genotypic frequencies,
for the kth locus. The ijth element of S is the conditional probability of
progeny g;, given it is progeny from a self-fertilization of maternal parent
gik and the ijth element of T, is the conditional probability of progeny
g« given it is an outcrossed progeny of maternal parent g;«. The vector
g« labels genotypes referred to by the corresponding elements of Sy, T,
and f,, and is not used in any computations.

We now use the Kronecker product of matrices, denoted by A ® B for
the product of A with B. This operation takes each element of A and
scalar multiplies the entire B matrix, generating a new submatrix of the
dimensions of B in place of each A element, resulting in a matrix of size
(ik % jl) if A is of dimension (i Xj) and B is of dimension (k X [), viz.,

auB apB --- ayjB
A®B _ az:lB azzB e az,:jB i
ale asz et a,','B

The Kronecker product of two column vectors is identical to the Kronecker
product of two single column matrices. If we let

§=5108%: -8,
T=T.®T>®--- T,

then for n unlinked loci and outcrossing rate ¢, the parent-offspring transi-
tion matrix P is

P=(1-1t)§+:T.

Observe that P is a function of outcrossing rate and pollen gene frequencies,
with column sums equal to unity, and that P can get large: for » loci and
two alleles, the matrix is of size (3" X 3") and has 32" elements.

Let m be a vector of length 3" which contains maternal genotypic
frequencies, and whose ith element is the frequency of the multilocus
genotype named by the ith term of the Kronecker ‘“‘product”

=808 - g.

(This “product” associates names between loci.) Now it is apparent that,
by referring to g, the jth column of P is the probability distribution of
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progeny from the multilocus maternal parent genotype named by the jth
element of g. Furthermore, the /jth element of P contains the probability
of the progeny genotype named by the ith element of g, given the maternal
parent genotype named by the jth element of g. Therefore, the probability
of the progeny genotype named by the ith element of g, regardless of
parentage, is the ith element of the column vector resulting from the
matrix-vector product Pm. The estimation procedure in this paper is based
on this model, which assumes no selection or mutation following fertiliz-
ation, all genotypes outcross at the same rate to a homogeneous pollen
pool, and alleles at different loci segregate independently.

We need an equation for the frequencies of multilocus genotypes in a
mixed mating population at equilibrium (assuming no natural selection,
mutation, or linkage between loci) because the inference of maternal
parentage will partly depend on these frequencies. Analogous to Wright’s
equilibrium for a single locus under inbreeding, we define f as the column
vector of inbreeding equilibrium genotypic frequencies (naming by the
elements of g is now implicitly assumed), and f, as the column vector of
multilocus Hardy-Weinberg genotypic frequencies (where each locus is at
Hardy-Weinberg equilibrium and no genotypic associations exist between
loci). f, is simply found by taking the Kronecker product of all single locus
Hardy-Weinberg frequency vectors. To find f, note that at equilibrium,

f=Pf,
or

f=0—1)8f +:Tf.
Then,

f=Qa=0S8f+1f,,

since one generation of random outcrossing restores multilocus Hardy-
Weinberg equilibrium (no gametic disequilibrium is generated by the mixed
mating model). Solving for f yields

f=td—-1-08)7"f,

where I is the identity matrix of suitable dimension. The equilibrium
frequencies are thus obtained by inverting a matrix which depends only
on the outcrossing rate, and multiplying the inverted matrix with a vector
of Hardy-Weinberg frequencies and the outcrossing rate. The elements
of the inverted matrix can actually be found by inverting a matrix of size
[(n+1)X(n+1)], for n loci, thus avoiding the prohibitive task of inverting
(I —(1—1)S8) for large n. This equilibrium inbreeding frequency vector f
accounts for the occurrence of genotypic identity disequilibrium, or the
concentration of heterozygosity in fewer individuals than expected, on the
basis of single locus products, in mixed mating populations, an effect
originally studied by Bennett and Binet (1956), and further analyzed by
Weir and Cockerham (1973).

3. THE ESTIMATION PROCEDURE

We are interested in estimating from the progeny data over # loci the
outcrossing rate ¢, a column vector p of pollen gene frequencies (of length
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n), and if we infer maternal genotypes, the vector of maternal genotypic
frequencies m (of length 3"). The estimation of these parameters uses a
two-step maximum likelihood procedure as follows. The first step (to be
skipped if maternal parentage is known) is to derive a matrix of probable
maternal genotypes, based upon the data and prior estimates or guesses
of +, p and m. For ! families, the progeny data are placed in a matrix D
of size (3" x!), whose ijth element contains the observed integer number
of progeny of genotype i/ in the jth family. Let M be a matrix of size
(I x3"), whose ijth element is the probability of maternal parentage of the
ith family by the jth genotype.

Using Baye’s theorem, the ijth element of M is estimated by raising
each element in the jth column of P to the power of each corresponding
element (i.e., elements in the same position) in the ith column of D, then
taking the product of all these 3" terms with the jth element in m, and
finally normalizing the product with respect to the entire row of M. This
element is then the probability that genotype j is the true maternal parent
of the ith family, given Pm, and the data in the ith column of D. An
alternative (following Brown and Allard 1970) is to choose the most likely
maternal parent as the only parent used in subsequent calculations; then
the rows of M are set to zero except for the maximum value of each row,
which is set to one. The matrix of observed parent-progeny transitions X
is then

X =DM,

whose ijth element contains the number (not necessarily integer-valued)
of progeny of genotype i descended from parent genotype j, in the entire
population. If maternal parentage is known, or if the progenies are offspring
of bulked seedlots (each lot is of uniform genotypic composition), the data
are placed directly into X at this point.

We now define A-B, for A and B of identical dimensions, as the
element by element product of A with B (often referred to as the Schur
product), wherein each element of A is multiplied by the corresponding
element in B, resulting in a new matrix of the same dimension. We also
define In (A) as the natural logarithm of each element in A (resulting in a
matrix of the same dimension), 1 as a column vector of ones of length 3",
and AT as the transpose of A.

The second step is to fit the observed transitions in X with those
expected in P by maximizing the multilocus log likelihood equation

L(X, P)=1"(XoIn (P))1.

As P is a function of ¢+ and p, P is adjusted until L(X, P) attains the
maximum value. The estimation is finished at this point if maternal paren-
tage is known or bulks are used; otherwise several repetitions of the
procedure are required to improve the prior estimates of ¢, p and m.

To obtain a revised estimate of m, we first estimate single locus maternal
(ovule) allele frequencies (0, ) using the data in M. For locus k,

6 =1"TM(111)®(111)®@" - - (130)®- - - (111))7
where 1 is a column vector of length /, and the vector (1 3 0) is the kth

3-element vector in the above Kronecker product. Let r,, be a three
element vector of Hardy-Weinberg frequency estimates at the kth locus,
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and ri, be a 3" element vector of multrlocus Hardy-Weinberg frequency
estimates. The Hardy—Weinberg estimates 0%, 26, (1 —6i) and (1 — 6, ), are
placed into i, for each locus k; and the Kronecker product over all rit, 4,
l1=k=n, is taken to obtain m, Then an estimate of m is m =
f(I—(1—1)8) ‘1, (as derived earlier). The estimates of single locus pollen
gene frequencies are directly obtained when L(X, P) is maximized, for the
elements of T (all of which contribute to P) are taken to be the product,
over all loci, of single locus pollen gene frequencies. Note, however, that
these single locus gene and genotypic frequency estimates are a function
of the data from all loci.
To maximize t in L(X, P), we use the one-step iteration

tiv1 =17 (X o1, T/ Pk)1

where T/ P is the element by element quotient (each element of T is divided
by the corresponding element of P resulting in a matrix of identical
dimensions), k is sample size and 1 is a column vector of ones of length
37; asimilar expression for p was used. This method always, but sometimes
slowly, converges for t <1. Maximization was approximately achieved as
judged by the printouts of the likelihood value at each iteration; conver-
gence of this simple iteration occurs perhaps because the second derivatives
of the log-likelihood function are negative or zero, except for
3L (X, P)/at ap which approaches 0 as n gets larger Fewer iterations were
needed when more loci were included, as the maximum becomes sharper
peaked, but more iterations and occasionally uncertain convergence were
typical when loci exhibited dominance or when simulated data (discussed
later) were generated that involved departures (selection, assortative mat-
ing) from the assumptions.

With a large number of loci, the size of these matrices would exceed
the computer memory, and if all possible multilocus parents were included,
the computational time could become prohibitive. But it is sufficient to
work only with those elements of P corresponding to the non-zero elements
of X; i.e., we need to consider only the likelihood of each sampled
genotype. If parentage is known, the number of elements of P used in
computations are merely equal to or less than the number of multilocus
genotypes sampled. Inferring maternal parentage is more difficult; the
procedure we adopt is to first eliminate very unlikely parents by using
single locus analysis, then examine the remaining possible maternal parents
using multilocus analysis, and excluding from M the less probable multi-
locus genotypes if their likelihood was less than some fraction of the most
likely multilocus genotype. An estimation program, written in FORTRAN
for a PDP 11/34 minicomputer, which can accommodate up to 10 loci, 500
plants, two or three alleles per locus, and either dominant or codominant
expression of alleles, is available from K. Ritland.

4. GENERALITY OF THE MODEL

The model presented here can be modified to incorporate some other
modes of inheritance. 8, and T, can be enlarged to accommodate three
or more alleles at locus k. Dominance is incorporated at the k-th locus
by adding together rows of the §, matrix which correspond to the same
offspring phenotype, and likewise adding together all corresponding rows
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of the T, matrix. Then the Kronecker products and computations proceed
as before, with the observation that P and X now have fewer rows than
columns. For data on triploid endosperm characters (when two identical
alleles are derived from the maternal side, the third from the paternal) the
diallelic transition matrix is of size (4 X 3). If genotypic differences in out-
crossing rates are of interest, P can be expressed (using the element by
element product of a matrix with a vector, where each element of the
vector scalar multiples the corresponding column of the matrix) as P =
(Se(1—¢)+T-t) where ¢ and 1 are now column vectors of length 3", and
each element of ¢ is estimated.

A multilocus estimation model of Shaw, Kahler and Allard (1981) can
be compared with this model. Briefly, the expected proportion of the data
elements of X corresponding those elements of P containing non-zero
contributions from both § and T is calculated from the single locus pollen
gene frequency estimates (obtained using the model of Clegg et al., 1978)
and known maternal parent genotypes. This proportion (the non-discern-
able outcrosses) is multiplied by ¢, and added on to the proportion of the
data containing directly observable outcrosses (the proportion of the ele-
ments of X corresponding the elements of P with a zero contribution from
§; this is when a homozygous mother has heterozygous progeny at some
locus), to yield a multilocus estimate of ¢£. This method does not make
efficient use of the multilocus data for estimating ¢, particularly when there
are few loci available or gene frequencies are extreme, but is notable in
its simple and direct approach in using some properties of a multilocus
inbreeding system.

5. PROPERTIES OF THE ESTIMATES

To characterize basic statistical properties some analytical results will
be presented, but often properties had to be evaluated using Monte Carlo
simulation. For simulation some hypothetical data sets were made up as
follows: (i) outcrossing rate and gene frequencies were specified; (ii) for
each family a maternal genotype was randomly chosen at each locus
according to the equilibrium proportions under inbreeding; (iii) for each
progeny in a family a self or outcross was randomly chosen according to
their respective probabilities; and (iv) for each progeny, genotypes were
chosen randomly at each locus according to the probabilities contained in
the columns in S (if selfed) or T, (if outcrossed), for 1=k =n. This
describes the basic model with no selection or assortative mating; however,
.in order to study their effects on the estimates, modified data sets were
generated as noted below. Once a complete data set was generated,
estimates of ¢, p and m were obtained using the estimation procedure. The
process was replicated many times (from 50 to 250) until the estimates
gave confidence intervals indicating the bias or variance of the estimates.
Ten families with ten individuals per family were used with input p, =0-5,
t =0-5, unless otherwise stated.

(i) Bias

A deviation of the mean of many replicate estimates from the input
value indicates a bias in the estimate. No significant deviations were found
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when using the basic multilocus model, but when selection or assortative
mating modified the data, the estimator displayed some interesting proper-
ties. In considering the effects of selection, it is important to note that
selection for heterozygotes has two effects on the data. First, it raises the
pre-selection effective outcrossing rate by the selective deaths of propor-
tionally more selfed zygotes; this ‘‘post-selection outcrossing rate” is ¢, =
(tw Tm)/(w "Pm), where w is a column vector of fitness coefficients.
Second, selection raises the level of heterozygosity in both selfed and
outcrossed progeny. To study how these two factors affect the multilocus
outcrossing estimate, two sets of data were generated. First, homozygotes
at one of the »n loci were assigned fitnesses of 0:667, relative to 1 for the
heterozygote, whereas all other loci were neutral. Second, all loci were
made heterotic, with homozygotes at all loci assigned relative fitnesses of
0:667. Results (fig. 1) show that the multilocus estimate asymptotically

SELECTION

¢+~ AOF All loci

One locus

No. of Loci

F1G. 1.—Deviation or bias of the multilocus estimate of outcrossing from the post-selection
outcrossing rate f; with heterotic selection at all loci, and heterotic selection at just one
locus (estimated by simulations described in text). 95 per cent confidence intervals are
given in all figures.

approaches the post-selection outcrossing rate ¢, with added loci; the
deviation or bias of the estimate from the post-selection outcrossing rate
decreases slowly if all loci are under selection, and decreases quickly if
only one locus is under selection. Similar results were obtained for the
case of selection against heterozygotes.

To study the effects of non-random mating during outcrossing, the
outcrossing of a homozygote at a locus to the identical pollen type was
reduced by one-half. One set of simulations was run with one locus mating
in this negative assortative mode, and remaining loci with random mating,
while a second set of simulations were run with all loci under negative
assortative mating. The results (fig. 2) indicate a pattern of bias reduction
similar to the selection study (quick elimination with just one locus in
violation, slow elimination with many loci in violation). A similar pattern
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FiG. 2.—Deviation or bias of the multilocus estimate of outcrossing from the true outcrossing
rate with negative assortative mating at all [oci, and at one locus (estimated by simulations
described in text).

of bias reduction was observed in a simulation of positive assortative mating,
and when data were generated with positive assortative mating at some
loci and negative assortative mating at other loci (or plus-minus selection
effects) the biases were observed to cancel each other out. Shaw and Allard
(1979) discuss how hypothesized differences in the bias of single vs. multi-
locus estimates can provide additional information concerning the breeding
structure of a population. Our simulation results confirm that the bias of
a multilocus estimate is reduced relative to a single locus estimate, but that
elimination of bias with additional loci can be gradual in some cases.

To test for any deviations of data from the assumptions of the model
(such as those mentioned above), the chi-square test for the goodness of
fit of model expectations with the data, using element by element products
and quotients, is given for E = kPom, by

X' =1"(X-E)*(X-E)/E)\,

where 1 is a column vector of length 3", with 7" —4 Z?z17i71—(n+1)
degrees of freedom (for n diallelicloci). However, the number of categories
(e.g., non-zero elements of P) increases by 7", necessitating the lumping
of categories for larger n, since the chi-square test is not valid if many cells
have low expectations. But the categories must be lumped randomly
(otherwise certain loci will be favoured), involving a rather difficult task.
A less satisfactory but feasible test for goodness of fit of multilocus data,
which we will use in our example, is to obtain an empirical distribution of
the value of the log-likelihood function, using Monte Carlo simulation with
the estimates as input parameters, and to reject the model if the log-
likelihood of the estimates and data in question is less than, say, 95 per
cent of the log-likelihood values based on simulated data sets.
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(1) Variance

Variances of the estimates 7, p and m decrease, sometimes rapidly,
when more loci are used, the rate of decrease depending on the true values
of parameters, the number of progeny per family if maternal genotypes
are inferred from progeny arrays, and the genotypic composition of the
maternal population.

If maternal parentage is known and sample size is large, the lower
bound for the variances and covariances of f and p are found by inverting
a symmetric information matrix. Using element by element products and
quotients, element (1, 1) of the diallelic multilocus information matrix is
given by the expected value of the second derivative with respect to ¢, viz.

~E(d’L(X, P)/dt*)=1" (T = 8)°(T —8)/P)m

where 1 is a column vector of ones of length 3"
Elements (i+1,/+1) for 1=i/=n, are obtained from the expected
second derivatives with respect to p at the ith locus,

—E(d’L(X, P)/dp})=17((*T'(i) T'({)/ P)m

where T'(i) is identical to T except that the ith matrix (T;) in Kronecker
product forming T'(7) is replaced by the matrix whose elements are deriva-
tives, with respect to p;, of each corresponding element of T;. Elements
(1,7+1) and (j+1,1), 1=j=h, are expected second derivatives with
respect to ¢ and p;,

~E(d*L(X, P)/dtdp;)) =17 (¢tT'(j)o(T —S)/ P)m,

andelements (/ +1,j+1)and (j+1,i+1), 1 =i/ <j=n,are expected second
derivatives with respect to p; and p;,

—E(d’L(X, P)/dp:dp;) =17 (’T'(i)>T'(j)/ P)m.

Inverting this matrix gives variance of # per observation in element (1,1), the
variances of p; per observation on the remaining diagonal elements, and
covariances on the off-diagonals.

Using this formula, a plot of the variance of f per observation from 1
to 5 loci for gene frequencies of (-5 at inbreeding equilibrium (fig. 3)
reveals the decrease in variance, which is especially pronounced for ¢ greater
than 0-5 as some additional loci are used in the estimate. The variance
per observation with infinitely many loci is ¢(1—¢), and even with few loci
this limiting variance becomes the dominant component of the variance.
However, our calculations of variances when gene frequencies are more
extreme or when loci exhibit dominance, show a less rapid approach to
the limiting value as more loci are added, indicating that relatively more
loci are needed in these cases for a satisfactory estimate of «.

The variances of p; found by this formula, for gene frequencies of 0-5
and ¢ of 0-5, (at inbreeding equilibrium) are plotted in fig. 4 for cases of
both dominant and codominant loci (the variance is symmetric about p = 0-5
for codominant loci). The decrease in variance is not as great as in fig. 3,
but reduction is still pronounced, especially with dominance and high p.
When dominant gene frequencies were near one, the variance of the single
locus estimate p; (Which approached infinity as p approached 1) was reduced
to near 6 with the addition of one locus. The theoretical limit of the variance
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F1G. 3.—Variance of the estimate of outcrossing rate ¢ per observation, as a function of the
true outcrossing rate ¢ and number of loci n, for gene frequencies of 0-5 (determined by
inverting the information matrix).

of pollen gene frequency estimate with infinite loci is not pi(1-— p)/t
since at that one locus case, heterozygotes in the progeny of heterozygous
parents yield no information about the pollen gene frequencies at that locus
regardless of the number of other loci used in the estimate. The limit for the
co-dominant case is pi (1 —pr)/(¢(1 — m2,./2)) for the kth locus, and for the
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F1G. 4.—Variance of the estimate of pollen gene frequency p at a particular locus for ¢=0-5,
as a function of pollen gene frequency p, number of loci # (gene frequencies are identical
over all loci) and mode of inheritance (determined by inverting information matrix).
Variances are symmetric about p =0-5 for loci with codominance, so only right half is

shown.
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dominance case it is pi (1 —pi)/(#(1 — mq x —m2/2)), Wwhere my x, m2 and
ms . are frequencies of maternal genotypes A, Ay, Adyi, ardr, respectively,
at the kth locus.

The total variance of estimates would include effects due to a small
total sample size, the sampling of families, misidentifications when inferring
maternal genotypes, as well as numerical problems in maximizing the
log-likelihood equation. Simulations, with parameters as described at the
start of this section, were run to estimate the total variance for various
values of t and n (note that sample size is 100). Simulation results (fig. 5)
again demonstrate the decrease in variance of the estimates when more
loci are used in the estimate, especially marked between one and two loci.
When gene frequencies are intermediate, fewer loci are needed for species
with low outcrossing rates to closely approach the theoretical limiting
variance, whereas more loci (perhaps 4 or 5) are needed for species with
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FI1G. 5.—Results of simulations (discussed in text) showing the decrease in variance of the

gstimate of outcrossing rate 7, for gene frequencies of 0-5, when more loci are included
in the estimate.
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FiG. 6.—Simulation results demonstrating the decrease in variance of the estimate of outcross-
ing rate / when more loci are included in the estimate, for two modes of inheritance
and outcrossing rate of 0-5. Upper line shows decrease when all loci exhibit dominance
and gene frequencies are 0-5, while lower line shows decrease when all loci have 3
codominant alleles at frequencies of 0-333.

high outcrossing rates. The effects of dominant alleles and triallelic loci
were also evaluated using simulation and the results (fig. 6) for +=0-5,
show a continual decrease in variance when alleles are dominant at all
loci, and a rapid decrease in variance when three co-dominant alleles (at
frequencies of 3) are used.

The relationship between the predicted variance, given by inverting the
information matrix, and the total variance, estimated by simulation, can
be studied by comparing fig. 3 with fig. 5. A summary is provided in
table 1, where confidence intervals were excluded for brevity. With
more loci, the predicted variance closely matched the total variance, and
the fit was particularly good at intermediate gene frequencies and 5 loci.
Generally, with fewer loci, extreme gene frequencies or dominance (when

TABLE 1

Discrepancy between predicted variance per observation (given by formula) and observed
variance per observation (based on simulation)

One locus Three loci Five loci
pred. obs. pred. obs. pred. obs.

t=09 1-880 3-280 0-490 0-970 0-254 0-288

-05 t=0-5 1:125 1-640 0-437 0:546 0-319 0-354
p= t=0-2 0-432 0-542 0-209 0-220 0-174 0-177
t=0-05 0-102 0-432 0-056 0-054 0-0560 0-050

p=09 =05 2-830 4-000 1-013 2-140 0:654 0-992
p=0-5 =05 dominance 2-250 4-290 0-806 1-900 0-526 0-820
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the variance is larger) the differences between the predicted and total
variance were greater in proportion to the variance. Simulation runs with
10 families and 40 plants per family gave a much closer fit between the
observed and predicted, indicating that the effects of small sample size are
predominant in the discrepancy.

The estimation procedure also gave small but significant decreases in
the variance of ovule gene frequency estimates when more loci were used
in the estimate, due to an increased accuracy in inferring the maternal
parent. For outcrossing rate and gene frequencies of 05, the average
probability assigned by the estimator to the true maternal parent at each
locus increases when more loci are included in the estimate (table 2). Larger

TABLE 2

Accuracy in inferring maternal parent at a single locus, measured as average probability assigned
by the statistic to the true parent (t=p=0-5, 100 plants total)

Clegg et al. model Brown et al. model
No. of Dominance
loci 10 per family 5 per family 10 per family 10 per family S per family
1 0-972 0-860 0-906 0-982 0-909
2 0-973 0-863 0-908 0-986 0-912
3 0-979 0-879 0-911 0-990 0-922
4 0-982 0-889 0-917 0-990 0-924
5 0-984 0-898 0-916 0-992 0-928

gains are obtained when there are fewer individuals per family, but not if
there is dominance. In using the Brown and Allard (1970) model (which
chooses only the most likely maternal genotype to use in subsequent
calculations vs. the Clegg et al. (1978) model, which includes all likely
maternal genotypes) to speed up computations with many loci, we found
lower variance in estimates relative to the Clegg et al. model. With 10
families and 10 plants per family, the reduction was slight, but when 20
families and 5 plants per family were used, a 3 reduction in variance relative
to the model of Clegg et al. (1978) occurred. This is due to the merit of
choosing only the most likely state, resulting in a higher power in inferring
maternal genotypes, demonstrated in the right hand columns of table 2:
the average probability assigned to the true parent is greater when the
most likely parent is chosen. Thus, it appears desirable to use the most
likely maternal parent to increase both computational and statistical
efficiency.

(ili) Relationship of n-locus estimates to lower order estimates

Since the regularity conditions for asymptotic efficiency of the maximum
likelihood estimator as described in this paper are met (cf. Kendall and
Stuart, 1979, p. 46), the n-locus estimate is the unique minimum variance
estimate of and p using n-locus data in the class of all estimators of ¢ and
p. In other words, any estimate of ¢ and p using subsets of »n-loci will have
a higher variance than the n-locus estimate.

Estimates using different combinations of loci but the same plants will be
correlated due to the effects of sample outcrossing rate or gene frequency. If
we denote V, as the variance of an estimate €, of  or p based on a subset of
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the n loci, V, as the variance of an estimate &, of the same parameter from
the same sample based on another subset of the # loci, and V,, the variance
of the n-locus estimate of the parameter, the correlation between é, and é; is

within the range
11—
\/V v, \/

(Kendall and Stuart 1979, p. 18). If we let one subset be the set of n loci,
the correlation between an estimate with variance V, based on any subset
of loci_and the n-locus estimate with variance V, is seen to be exactly
P=VV,/V,.

6. AN EXAMPLE

We will compare the estimates of outcrossing in two populations of the
annual plant, Limnanthes alba: one located 6-7 miles west of Ingot on
Hwy 299, Shasta County, California, and the other located 3-1 miles west
of Camp Mather in Tuolumne Co., California. Samples of both populations
were collected (398 individuals in 36 families from the Ingot population,
and 355 individuais in 37 families collected from the Mather population
325) and assayed electrophoretically at several loci, some with 3 alleles
(unpublished data of C. I. McNeill). Loci used in this example from the
Ingot population are: peroxidase (Prx), glutaminoxaloacetic transaminase
(Got 3) and esterase (Est 2); and from the Mather population are: shikimic
dehydrogenase (Sdh), two Got loci (Got 2, Got 3) and esterase (Est 2).

Data were arranged by families and each individual n-locus genotype
coded by a string of integers of length n, with genotypic assignments viz.
for a triallelic locus A;A;=1, A{A,=2, A,A,=3, A1A:=4, AA3=5,
A3A;=6. For example, a 4-locus genotype could be coded as 2153. Loci
with dominance (not used here) are coded as A; =1, A,A,=2, etc.
Missing data at a particular locus were coded by a zero; in these cases the
estimation procedure is based on a reduced number of loci for that indivi-
dual only. Separate programs were run to find the variances of estimates by
1) inverting the information matrix and 2) Monte Carlo simulation; these did
not differ significantly here due to the large sample size.

Table 3 presents a summary of the estimates using both single locus
and muitilocus analyses. Single locus estimates varied widely, with some
loci indicating a significant between- populatlon difference in outcrossmg
rate, while the others did not; in addition, 7 based on the Sdh locus in the
Mather population was significantly lower than the other single locus
estimates based on the same sample. The confidence interval was halved
by the muitilocus estimate and provided a clear distinction in the outcrossing
rate between populations. The minimum confidence interval possibie
(based on the case of infinite loci) is £0-046 for the Ingot population and
0-031 for the Mather population; these were approached fairly closely by
the three locus estimates. The multilocus estimates were slightly higher
than the respective means of single locus estimates for both populations
indicating that a negative bias has probably been removed by the multilocus
estimate. However, even with the increased efficiency of the multilocus
estimate, no differences between pollen and ovule frequencies were found.
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To evaluate the goodness of fit of each data set to the multilocus model,
Monte Carlo simulation, using the estimates as input parameters, generated
log-likelihood values based on 250 data sets. The number of times the log
likelihood of the actual estimate exceeded the log likelihood of the simu-
lated estimate formed a basis for acceptance of the model. The single locus
estimates in the Ingot population are valid (the last column of table 3 gives
the number of simulated log-likelihood values falling below the actual
log-likelihood values based on 250 data sets. The number of times the log-
likelihood of the actual estimate exceeded the log-likelihood of the simu-
simulated log-likelihood clearly exceeds actual value) yielding an aberrant
estimate of outcrossing rate at this locus. The 3 locus estimates for both
populations are on the borderline of acceptance (Sdh was excluded due to
its lack of fit, but the 4 locus estimate including Sd4 was found to be nearly
identical to the three locus estimate). The poorer fit of the multilocus data
to the model (simulated values fell below actual values only a few times
out of 250) relative to the single locus fit, might indicate some linkage
between loci, not surprising since this species has a haploid chromosome
number of five. As we have demonstrated, the multilocus estimate is less
affected by selection and non-random outcrossing than single locus estimates,
and one expects this to also hold for linkage, but this goodness of fit test
will reject multilocus data even if only one of many loci violates model
assumptions.

7. CONCLUSION

We have provided a description of a multilocus model for estimating
the outcrossing rate and gene frequencies in plant populations utilizing the
family structure of a population. The use of matrix notation has allowed
a systematic development of the single locus maximum likelihood methods
into a general multilocus method. The basic properties of the multilocus
estimate in terms of variance, bias and robustness, using mathematical
analysis and computer simulation, indicate the usefulness of this method
for determining the proportion of progeny derived from outcrossing.
However, the procedure presented here applies to unlinked loci, and its
use is not advised for linked loci.

In conclusion, we raise three issues. First, are the improved estimates
of outcrossing rates worth the effort required in gathering data at many
loci? In relation to allozyme variation studies, multilocus data are often
readily available and fewer and slightly smaller families would be adequate
as well as a timesaver. Reference to fig. 5 suggests, for example, that three
or four loci with intermediate gene frequencies, scored from 200 individuals,
will give good estimates. Second, are decreased bias and variance meaning-
ful, when in reality, outcrossing rates vary widely among populations and
seasons (e.g., Allard and Workman, 1963; Harding et al., 1974), possibly
even among inflorescences within the same plant? Better estimates, in fact,
provide a greater statistical rigour in testing such variation in nature. To
be sure, differences in outcrossing rates are of primary interest in relation
to such matters as the optimal genetic systems, the evolution of inbreeding,
and the role of heterosis in inbreeding populations (e.g., the heterozygosity
paradox cf. Brown, 1979). Third, do individual loci have different effective
outcrossing rates and does the multilocus estimate mask this variability?
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The model presented here does not allow interlocus variation in the
‘“‘effective outcrossing rate” (a parameter summarizing the joint effects of
non-random mating, Wahlund effects, and selection upon the production
of heterozygosity in the progeny, cf. Allard and Workman, 1963); rather
it provides an estimate of the proportion of zygotes derived from cross-
fertilization to another genetic individual, even if the mating is between
related individuals. The multilocus model presented here can be modified
to allow differences between loci in effective outcrossing rates (due to the
many degrees of freedom), and should allow a theoretical perspective on
the role of variability in effective outcrossing rates among loci in influencing
the genetic structure of inbreeding populations.

Acknowledgments.—This research was supported in part by grant DEB 7823522 from
the National Science Foundation (to S.K.J.} and by a National Research Service Award
5-T32-GMO7467 (NIH) to the senior author. We thank Tony Brown for a critical and helpful
review of an early draft and Doug Shaw for providing a copy of his unpublished manuscript.

8. REFERENCES

ALLARD, R. W., AND WORKMAN, P. L. 1963. Population studies in predominantly self-
pollinated species. 1V. Seasonal fluctuations in estimated values of genetic parameters
in lima bean populations. Evolution, 17, 470-480.

ALLARD, R. W, KAHLER, A. L, AND WEIR, B. S. 1972, The effect of selection on esterase
allozymes in a barley population. Genetics, 79, 115-126.

BENNETT, J. H, AND BINET, F. E. 1956. Association between Mendelian factors with mixed
selfing and random mating. Heredity, 10, 51-55.

BROWN, A.H.D. 1975. Efficient experimental designs for the estimation of genetic parameters
in plant populations. Biometrics, 31, 145-160.

BROWN, A. H. D. 1979. Enzyme polymorphism in plant populations. Theor. Pop. Biol., 15,
1-42.

BROWN, A. H. D, AND ALLARD, R. W. 1970. Estimation of the mating system in open-
pollinated maize populations using isozyme polymorphisms. Genetics, 66, 133-145.
BROWN, A. H. D, ZOHARY, D.. AND NEVO, E. 1978. Outcrossing rates and heterozygosity
in natural populations of Hordeum spontaneum Koch. in Israel. Heredity, 41, 49-62.
CLEGG, M. T.,,KAHLER, A. L., AND ALLARD, R. W. 1978. Estimation of life cycle components

of selection in an experimental plant population. Genetics, 89, 765-792.

FYFE, J. L. AND BAILEY, N. T. J. 1951, Plant breeding studies in leguminous forage crops.
I. Natural crossbreeding in winter beans. J. Agric. Sci., 41, 371-378.

HARDING, J.. MANKINEN, C. B., AND ELLIOTT, M. H. 1974. Genetics of Lupinus. VII.
Outcrossing, autofertility, and variability in natural populations of the nanus group.
Taxon, 23, 729-738.

JAIN, s, K. 1979. Estimation of outcrossing rates: some alternative procedures. Crop. Sci.,
19, 23-26.

JAIN, S. K., AND MARSHALL, D. R. 1967. Genetic changes in a barley population analyzed
in terms of some life cycle components of selection. Genetica, 38, 355-374.

KARLIN, S., AND LIBERMAN, U. 1979. Central equilibria in multilocus systems. 1. General-
ized nonepistatic selection regimes. Genetics, 91, 777-798.

KENDALL, M., AND STUART, S. 1979. The Advanced Theory of Statistics. Volume 2:
Inference and Relationship. Charles Griffin and Co. Ltd., London.

ROUX, C. Z. 1974. Hardy-Weinburg equilibria in random mating populations. Theor. Pop.
Bio., 5, 393-416.

SHAW, D. V., AND ALLARD, R. W. 1979. Analyses of mating system parameters and
population structure in Douglas fir using single and multilocus methods. In Isozymes of
Forest Trees and Forest Insects.

SHAW, D. V,, KAHLER, A. L., AND ALLARD, R. W. 1980. A multilocus estimator of mating
system parameters in plant populations. Proc. Nat. Acad. Sci. USA, 78, 1298-1302.
VASEK, F. C. 1968. Outcrossing in natural pouplations: A comparison of outcrossing estima-
tion methods. In: T. Drake (Ed.) Evolution and Environment. Yale University Press, New

Haven, Conn.

WEIR, B. S.. AND COCKERHAM, C. C. 1973. Mixed selfing and random mating at two loci.

Genet. Res., 21, 247-262.



	A MODEL FOR THE ESTIMATION OF OUTCROSSING RATE AND GENE FREQUENCIES USING n INDEPENDENT LOCI
	1. INTRODUCTION
	2. THE PROBABILITY MODEL
	3. THE ESTIMATION PROCEDURE
	4. GENERALITY OF THE MODEL
	5. PROPERTIES OF THE ESTIMATES
	6. AN EXAMPLE
	7. CONCLUSION
	8. REFERENCES




