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SUMMARY

The effects of linkage and linkage disequilibrium on the genetic variances and
covariances of noninbred relatives are formulated for quantitative traits with
additive and dominance effects but without epistasis. Assortative mating is
excluded. Linkage disequilibrium between two loci introduces a covariance
between their additive effects and between their dominance effects. The usual
coefficients of additive and dominance variances found by counting paths through
common ancestors suffice to express the covariances of relatives, which now
include the additive and dominance covariances. The linkage parameter, or
recombination fraction, comes into play only when relating the additive or
dominance covariances from one generation to another.

1. INTRODUCTION

MANY authors have considered the covariance between the genotypic
values of relatives in a variety of circumstances, with the most general
treatment being given by Gallais (1974). Gallais has reviewed the relevant
literature and allowed for linkage, linkage disequilibrium, epistasis and
inbreeding for two loci affecting a trait. We consider here only the effects of
linkage and linkage disequilibrium, without epistasis or inbreeding, on the
covariances of relatives. These effects are not readily displayed in the
complicated formulations of Gallais, which are necessitated by his very
general treatment. We also provide some examples.

2. MODEL AND FREQUENCIES

For a trait governed by genes at loci A and B, we express the genotypic
value of an individual with genotype ABI/AkB( as

G''1=p-o+a'+ak+b'+bi+d<+d
where a and d denote additive and dominance effects at the A locus, and b
and c denote corresponding effects at the B locus. We let the genotypic
frequencies 9a of the initial ancestors, as a base of reference, be

= = P,P1 = (pq1 + 1)(pqi + k1)

where the P's are gametic frequencies, p's and q's are gene frequencies at
loci A and B, respectively, and 's are the usual measures of linkage
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disequilibrium. Thus, the initial ancestors are in Hardy—Weinberg equi-
librium and exhibit linkage disequilibrium.

Gene frequencies are considered to remain constant through matings,
but subsequent measures of linkage disequilibrium, denoted by D's, will
change as

D'=j(Dm+Df)
for each meiosis, where D' is for gametes produced by an individual formed
from (male and female) gametes having disequilibria Dm and Df. The
linkage parameter A is one minus twice the recombination fraction. For
convenience we have dropped the allelic subscripts i, jon the D's. We keep
Dm and D1 separate to allow for there being different numbers of individuals
in the paths from paternal and maternal parents back to the initial ancestors.

The disequilibrium for subsequent gametes requires this kind of expan-
sion through each individual back to the gametes in the initial ancestors. If
there are fir individuals in the path from a present gamete to the two gametes
forming the rth initial ancestor, the probability that the gamete has descen-
ded through this pathway without recombination is 2[(l + A )/4]", where the
factor 2 accounts for the two gametes in the initial ancestor. All initial
gametes are assumed to have the same disequilibrium. Without inbreeding,
all initial ancestors for any gamete are distinct so that the total probability, a,
of gametic integrity for a present gamete follows from summing over paths

a=2()
Linkage disequilibrium for our subject gamete depends on initial dis-
equilibrium and requires the gamete to have descended without recom-
bination from an initial gamete, so that

Da.
For equal values of 1r, r = n, as would be the case for distinct genera-

tions, summation for a is over 2_1 distinct paths to 2_1 ancestors, and then
we recover the familiar result for gametes uniting to form the nth genera-
tion, a =[(1+A)/2]", and

1+A
D=r(—--) .

3. VARIANCES

Since additive or dominance gene effects weighted by frequencies all sum
to zero over any index, and since the D's sum to zero over any index, the
genotypic mean values do not change for any member of any pedigree. The
variance changes however, and for the initial population it is

= PIIPJd(a + ak +b' + b, + d + c)2ijkl
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which decomposes into
2 2 2 i2 2additive variance = 2Oa +2Ob =p(a ) +Ypk(ak)

k

+q(b')2+ qj(b,)2
/ I

2 2 2 i2 /2dominance variance crD = crd +u, = plpk(dk) + qq1(c)ik II
additive covariance 4'ab = 2 1(a ')(b') + 2 k,(ak)(bI)ij ki
dominance covariance 2'cd =2 ijkl
The two covariances of additive effects, one for each uniting gamete, are

considered to be the same initially. Linkage disequilibrium is also seen to
cause a covariance between dominance effects, but there is no covariance
between additive and dominance effects.

For an individual in any pedigree without inbreeding formed by the
union of male and female gametes whose probabilities of integrity since the
initial gametes are am and af, the variance is

= cr + o + 2(am +a1 )''ab + 2(amai)''ca.

4. COVARIANCE OF RELATIVES

The same kind of pedigree path finding arguments are used to express
the covariance of the genotypic values of noninbred relatives. The
arguments are based on the probabilities that genes received by relatives X
and Y are derived from a single ancestral gamete. The probabilities that the
alleles in one gamete, m or f (male or female) in each of X and Y have
descended from one gamete in a common ancestor U in the pedigree are
written as (Pm,nij, ffu' 'Pmfu and 'Pfmu. These probabilities are a refinement of
those given by Malécot (1948) in part and Kempthorne (1957) in general.
The total probability that X and Y receive genes in male gametes, for
example, from a single ancestral gamete follows from summing over com-
mon ancestors

Pmm = Pmmp
U

When there are individuals in the loop through common ancestor U
between relatives X and Y for their male gametes

— (k\"u
0mm1j — U)

The covariance between X and Y without linkage disequilibrium is
(Kempthorne, 1957)

'GxGy ('Pmm + + 4Ornf + (cmnicoff + mf(pfm)cTD

and our purpose is to elaborate the effects of linkage disequilibrium.
For the effects on the additive covariance 'ab we note that the prob-

ability of nonallelic male genes A in X and B in Y (or B in X and A in Y)
having descended from the same gamete in a particular common ancestor of
X and Y is the same as that for allelic genes (e.g., A's in X and Y).



354 B. S. WEIR, C. C. COCKERHAM, AND J. REYNOLDS

Consequently, for the covariance of X and Y, the contribution to the
covariance of additive effects contributed by ancestor U is

(pmmu(amu +afu)'ab
where the terms arnu and cri relate the male and female gametes of U back
to the initial founders. We let

= amu + ai
and the covariance of a and b effects between X and Y, taking account of the
male and female gametes received by each, is

+ 'PJJU + mfu + 'Pfmu)YU'ab.
U

When all common ancestors have the same value of y, the covariance of a
and b effects is

('Pmrn + 'Pif + 4Omf + 0fm)7'ab.

If, further, am = a1 = a, as would be the case for all ancestors in the same
distinct generation, y = 2a. For initial common ancestors, y =2, and this
situation of not considering individuals earlier than the common ancestors of
the relatives in question may be the usual one.

For there to be a covariance between dominance effects between X and
Y, each of two AB pairs between A genes in X and B genes in Y (or vice
versa) must stem from an ancestral gamete. Because of no inbreeding this
happens only when they can be traced to two distinct common ancestors. If
male genes stem from common ancestor U and female genes from common
ancestor V, the contribution to the covariance is

2cOmmufly (YuYvY'cä

where the factor of 2 is for the A genes in X and the B genes in Y or vice
versa, and the factor of is for the averaging of the probabilities over the four
pairings of gametes between U and V. Now adding the case of a male and
female gene stemming from each of U and V gives the total covariance of c
and c/ effects between X and Y

2 (commup#v + mfOfmv)7(JyVcd.

The total covariance formula for X and Y is now

GxGy = ('pmmu + Pffu + Qmfj + 'ptmu)[° + 2YUSab]

+ + ){r + YUYv'cd]. (1)

When all common ancestors are in the same, nth, discrete generation,
y = 2a, where

f 1+A\'a = am a1 =

and

'GGy Pmm +Off+cDmf+(pfm)(OA +4aab)

+(commpff+ 2a2d).
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Consequently, for relatives stemming from common ancestors in a single
generation of a random mating population in linkage disequilibrium, the
coefficients of additive and of dominance quadratic terms are the same as for
linkage equilibrium. We just have to broaden the definitions of the additive
and dominance terms to include the respective covariances. Ewens (1979)
calls these broader terms the "true" additive and dominance variances, and
he also gives a numerical demonstration of the effects of linkage dis-
equilibrium on the covariance of relatives.

When V is a descendant of ancestor X,

'GGy = p[o +2(amx+af)b]
where the single path of n individuals between X and V provides the termin= ()

5. EXAMPLES

Evaluation of the covariance formulae is straightforward and requires
the identification of common ancestors, the counting of individuals in paths
to these ancestors and further evaluation from common ancestors to initial
ancestors. It is a simple matter to recover covariances for cases considered
by Gallais (1974). If X and Y are parent and offspring,

1 2'GxGy 2(7A +4ab)
while if X and V are half sibs

1 2
GxGy OA +4&b)

or full sibs
1 2 1 2

6GxGy =2(0-A +4'ab)+(UD+2cd).
The two sib cases require the parents of X and Y to both be in the initial
population, while the parent in the parent-offspring case is an initial
ancestor. The ease of using equation (1) however is better illustrated with
the following three more complex pedigrees.

(i) Three-quarter sibs

When X and V are three-quarter sibs with common parent U and
common grandparents V, W (see fig. 1), the terms arising from paths to
common ancestors are

1 1
40,nniu2' 4ffvPffw8

so that

'GGy = 1[3 +(47u+ Tv + Yw)ab]+I[0D +yu(yv + yw)S'cdI.
If V, W are in a discrete generation n, and U in the following generation
n+1

1 2 1+A n+1 1+A i
GGY{30A+[8(_) +4() j&b

2
1+k 2n±1

+[uD+2(—--) 6cd
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Alternatively, if V, W and U are in the same generation n,

'GxGy [crt +4(t) ab] +![cr2D+2(42)2'ccd].

(ii) Three-way cross

When X and Y have three common grandparents, U, V, W as in fig. 2,
the paths to common ancestors give

'Pmmv =

FIG. 2.—Pedigree for three-way cross.

U

w

0
x

FIG. 1.—Pedigree for three-quarter sibs.

Pn1fL, = 4fmw = 4,



so that
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GxGy = + (4yu +47w + 27v) 'ab] + ig[°D + YUYW'cd].

If U, V, W are all in generation n,

2 1+A 2n
2

cdj.

(iii) Four-way cross

WhenX and Y have four common grandparents U, V, W, Zas shown in
fig. 3,

so that

= 'Pff2 = (Pmfw = Pfmv =

'GxGy =[u+'j + 7v + 7w + 7Z)'ab]+5[O +(yuyz + 7I1/W)'cd]

and, when U, V, W, Z are in generation n,

2

GxGy j[TA +4() cCab] +[+2(j-)Cd].
6. DiscussioN

While our formulations have been phrased in terms of two loci, the
extension to any number of loci is straightforward. We extend the

V

FIG. 3.—Pedigree for four-way cross.
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definitions of r and o-, to include all loci, and the covariances, 'ab' and
cdS, as well as y's, for each pair of loci, must be summed together. The
additive and dominance coefficients in terms of 's remain the same. There
may be occasions, such as in natural populations undergoing a particular
selection regimen, where linkage disequilibrium remains constant over time.
In this case all y's = 2, and all common ancestors have the same linkage
disequilibrium.

The covariance formulae among relatives indicate in a general way the
extent to which estimates of additive and dominance variances based on
differences of these covariances can be biased by linkage disequilibrium.
Unfortunately, the bias, and even its sign, requires an exact knowledge of
the genetic effects, gene frequencies, and linkage disequilibria. The possible
magnitude of the effects of linkage disequilibrium is very large since there
are, for n loci, n(n — l)/2'ab'S and cd'5 as compared ton 2o-'s and o-'s in
the sums. However, there can be considerable cancellation in the sums of
'abS or ''s.

There is a probable basic difference between the 'ab'S and a's as to
sign, pointed out by Comstock and Robinson (1952). This can be demon-
strated for two alleles at each locus. Let the genotypic values be

A1A1 AA2 A2A2 B1B1 B1B2 B2B2
u gu —u' v hv —v

where g and h reflect dominance of the favorable genes A1, B1. We have to
account for only one distinct coefficient of linkage disequilibrium 1A,B1 =
The covariances are

= [1 —g(pi —p2)11 — h(q1 — q2)]uv
=42ghuv.

For partial dominance of genes, —1 <g, h <1, the sign of 'abis determined
by the sign of 2J and is plus or minus as the A1B1 genes are in coupling or
repulsion, respectively. On the other hand, the sign of 'cd is determined by
the product of the signs of g and h. With dominance of the favorable genes,
g, h >0, which appears to be the case in some species, a is positive.
Comstock and Robinson (1952) made these discoveries in formulating
estimates of dominance for particular mating designs. The conclusions
apply to all types of relatives, but are not as clear-cut for multiple alleles.

The inclusion of epistasis in conjunction with correlations due to linkage
disequilibrium leads to the usual statistical problems with interactions and
correlations in that most effects become correlated, and variances or
covariances of relatives become unduly complicated. Even with linkage
equilibrium, linkages, A >0, affect the covariances of relatives with epistasis
(Cockerham, 1956), since we then require probabilities, analogous to the
's, for A and B genes received by each relative being jointly descended
from a common ancestor. Only when there is complete correlation for a
block of genes, i.e., all A 's = 1, is there simplification when including epistasis
and linkage disequilibrium. In this case there is a single multiple allelic
series with allelic frequencies Pqk. .,and the variance can be operationally
broken into additive, o, and dominance, o-*, parts, which in conjunction
with the usual additive and dominance coefficients give the correct covari-
ances of relatives. However, we do not specify details of the compositions of
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a-* and o-* in terms of the various types of genetic variances and
covariances.

In finite populations, it is sometimes plausible to consider linkage
disequilibrium to be zero on the average, i.e., 'D = 0 where ' denotes
expectation, but 'D2 0 (Hill and Robertson, 1968). This, of necessity,
introduces a covariance of dominance effects as studied by Avery and Hill
(1978). Finite populations introduce inbreeding and drift which have other
effects on the genetic variances and on covariances of relatives, and the
general consequences are most easily clarified with our descent measures.
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