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SUMMARY

This paper investigates the dynamic behaviour of hybrid zones which are
maintained by a balance between dispersal and selection against hybrids. In
the first section it is shown that a hybrid zone involving a single locus can move
in response to a selective imbalance between the two homozygotes, and also to
variation in population density and dispersal rate. It can be trapped by
natural barriers, and so an allele which is selected against when rare cannot
advance, even if it is advantageous when common. The continuous model
used in deriving these results is shown to be a good approximation to the
stepping-stone model, provided that the dine Contains several demes.

The effect of stochastic forces on multi-locus hybrid zones is then considered.
An expression giving the shift in position after an arbitrary perturbation in
gamete frequency is derived. Using this formula, it is found that sampling
drift is negligible unless the zone includes few organisms and involves few loci.
Random variations in population structure are the dominant force, and could
ailow considerable movement in an even environment. However, natural
barriers can still trap hybrid zones, and so it is likely that they will remain
roughly where they first formed.

1. INTRODUCTION

IN recent years, many examples of parapatrically distributed taxa have come
to light. Two distinct types, often differing at many loci, abut and interbreed
in a narrow "hybrid zone "P1 These zones are of particular interest, since
they reveal the interaction between divergent genotypes, and may have some
bearing on mechanisms of speciation. Indeed, it has been proposed that they
play a central role as barriers to gene flow between speciating groups (White,
1968, 1978).

There are a number of possible explanations for such narrow dines.
They might be due simply to a recent mixing of two selectively identical
types. There might be a sharp ecotone along the dine, so that different
parental types are favoured on opposite sides, or so that hybrids are favoured
in a narrow band (Moore, 1977). However, one of the simplest and most
obvious explanations is that hybrids are at a disadvantage—in the simplest
case, heterozygotes are less fit. They might be inferior in viability, in fertility,
in fecundity, or in mating success. Organisms which cross the zone, into an
area where their own type is rare, will produce a greater proportion of hybrid
offspring than does the more common type, and so will be selected against.
In other words, when two populations, each at different, stable, equilibria
meet, a narrow zone of intermediates is expected to form (cf. Karlin and
McGregor, 1972). Since any complex genetic system should have many
stable equilibria, such sharp zones might be expected to occur quite often,
provided that the system changes so slowly that it is usually near equilibrium,

The term " hybrid zone "will be used to denote dines maintained by hybrid unfitness,
regardless of their origin.
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and that there is some mechanism for shifting a substantial region from one
equilibrium to another.

In this paper, the movement of simple, single locus zones under deter-
ministic forces will be considered first; the effects of various stochastic forces
on more general, multi-locus zones are then examined.

2. THE BASiC MODEL

To quantify the balance between dispersal and selection against hybrids,
either the stepping-stone or the continuous model of population structure
maybe used. The former consists of a set of discrete demes, each exchanging
members only with nearest neighbours, and having discrete, non-overlapping
generations. The latter assumes a continuous, dense distribution of
organisms, each of which has a certain probability of leaving offspring any
given distance away, per unit time.

The second model is much easier to analyse and is more amenable to
generalisation than the first. Therefore, although organisms may often be
distributed in discrete demes, and reproduce in discrete generations, the
continuous approximation is used; it will be valid where gene frequencies
change little between demes and between generations, as is likely if selection
is weak.

Second-order selection terms have been neglected, so the theory presented
here is less useful where selection is strong (for example, in pest control using
translocations). With these restrictions, it is possible to find the effect of both
deterministic and stochastic factors on the position of the zone.

(i) Notation

x, y position
time

p, q allele frequencies (p + q = I)
s fitness deficit of hybrids
m variance in progeny position per generation
p population densityd d2f' f" —i, etc.

dx dx

dt

w typical zone width

(ii) Selection

Suppose heterozygotes have fitness 1 —s, compared with homozygotes
both with unit fitness. If s<< 1, the population will be in approximate Hardy-
Weinberg equilibrium, and changes will be almost continuous in time. So,

= (P2+Pl_s) _ spq(p—q).
1—2pqs
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(iii) Dispersal

An equation expressing the effect of dispersal may be derived either as the
limit of the stepping-stone model, with very close demes, or, as in Nagylaki
(1975), from the distribution of progeny at (y, t+dt), from parents at (x, t).
Either approach gives, in one dimension,

P =p"+m'p'+m((p.2 \pj
In the stepping stone model, m is just Me2, where a fraction M is exchanged
between demes e apart each generation, and p is N/c, where N is the number
of breeding individuals in each deme. Using Nagylaki's formulae, and
assuming that dispersal is equally likely in all directions, m is the variance in
progeny position which is produced per unit time. (No generality is lost in
assuming that dispersal is isotropic, since the effect of anisotropy would be
the same as that of a density gradient.)

Provided that the organism does not disperse too far (the number of
progeny left at large distances must fall off at least exponentially), only m,
the variance of the distribution, need be known to describe gene flow.

(iv) An alternative representation

Combining the effects of selection and dispersal, a single-locus hybrid
zone, in one dimension, carl be described by:

m ,, (p'\p=—p +mp+mj—jp+spq(p—q).2
It is sometimes more useful not to solve this equation for p directly.

Instead, given that p obeys the above equation, we can look for a function of
p which never increases, so that it is minimised at equilibrium.

Consider, therefore,

H $ p2[m2p'2+2msp2q2]dx.

Then

R = — $ 4mp2j52dx

is always negative unless /' = 0 everywhere.
H therefore tends to a minimum.

(v) Equilibrium solution in one dimension (see also Bazykin, 1969)

Using the above, if m, s, p are constant, the solution at equilibrium (other
than fixation of one or other allele) is:

p =

where x0 is the (arbitrary) centre of the dine.
43/3—D
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FIG. 1.—Hybrid zones produced by selection against heterozygotes;
dispersal V'rn= 112 m.gen.

Thus, there is a transition from one allele to the other over a distance of

about w = as selection increases and dispersal decreases, the hybrid\Js
zone narrows, as would be expected intuitively. This solution will still hold,
approximately, if dispersal, selection against hybrids, and population density
change little within the zone. However, since H, with the above solution, is
inp/2ins there will be a tendency for the zone to move towards local regions

of low dispersal, low hybrid unfitness, and low population density; obviously
if homozygotes are not equally fit, it will tend to move in favour of the fitter
allele.

It should be noted that it has been assumed throughout that dispersal,
selection and population density are independent of allele frequency; this is
not necessarily so. One type might be more mobile; selection might be
frequency dependent; or, most likely, infertility or inviability of hybrids
might reduce population density at the zone. In the extreme "hard"
selection case, where there is no competition and so selective deaths cause a
proportionate reduction in population size, p = Po(l —2spqr), where r is the
intrinsic rate of increase. This reduction in density would tend to sharpen
the zone somewhat. The effect of genotype frequencies on population size is
complicated, and so it is reasonable to use the simple assumption of in-
dependence as a first approximation.

3. MOVEMENT OF THE ZONE

We have seen that a dine maintained by heterozygote inferiority will
move in response to a number of factors, whilst maintaining its integrity.
How fast is this movement, and which factors are likely to be most important?

(i) Selective advantage of one allele

Let the fitnesses ofPP, PQ,QQbe l+2S,1 —s+S, l;letS = s; (S,s<'zl).
Then:

1

Pt
S =10%

S =1%

x/km -
1
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m,,p = - p + spq(p — q)+ cLspq, which has a solution:

p =
(1+tanh((x+ E/I)).

Thus, the zone has the same width as before (,JI), but moves at a speed

towards the less fit type. For example, if the typical dispersal
2.J s
distance, ,.Jm, is 100 m gen4, and selection against heterozygotes, 5, is 10
per cent, the zone will be about 500 m across. If one homozygote has a
1 per cent superiority, it will move at 25 in per generation. As s—'O, this
tends to Fisher's equation for the wave of advance of an advantageous gene;
the above solution ceases to be stable for weak underdominance, and is
replaced by an asymmetric wavefront moving at c = /2m(S—s) when S> 2s
(Fisher 1937, Stokes 1976).

(ii) Density variations

If population density is not constant, the zone will move into regions of
low density. Such effects may be quite strong, since local variations in
population size may be large. (Fine scale changes in density within the zone,
will, however, not be important, even if they are quite large. See later.)

Since H mp2.J2ms for smooth changes in p, and

H = — f 4mp22dx,-
3H dyHthe speed may be calculated using — = — —, wherey is the zone position.t dty

Letting

p = = —j2p2/s,

= mpp ..J2ms.

Hence, . = — mfr ,with density gradient p'.
'p I

The effect of changes in dispersal rate, or selection against hybrids, can be
found by the same method.

= —tm', with dispersal gradient m',

= — with selection against hybrids varying at s'.
4 \sJ

What size of density gradient can prevent the spread of an allele which is
advantageous in the homozygote? Including the effect of differences in
homozygote fitness
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H(y) = mp2
(m2p2+2msp2q2_

2mSp2
(1 dx

= (2\/
— i p — (i + tanh (J1I (x—y 3 \ sp S 2m

Thus, if the density gradient is greater than , the fitter allele will
2w \sJ

prevail. An allele advantageous when homozygous, but not in the hetero-
zygote, may not spread if it meets strong local changes in population size.
(Note that if s, the allele is at an advantage even in the heterozygote, and
so local density gradients will not prevent a few long distance migrants from
spreading the allele. See Hadeler, 1976.)

For example, if there is a density doubling in 2 km, a zone, maintained
by 10 per cent selection and with 100 m dispersal as before, will move down
the gradient at 35 m per generation. A form with an advantage of less than
l7 per cent will not be able to advance up the gradient, but will be pushed
back.

(iii) Movement in two dimensions

So far, only a one-dimensional model has been used. This will apply to
short, straight zones, but takes no account of the effect of curvature. One
would expect" bulges "in the zone to be pushed back by weight of numbers,
thus keeping the zone more or less straight, and eventually eliminating small
isolates.

__ r mp2\/2msIf m, s, p vary slowly, H —j dl, where the integral is taken

round the hybrid zone. For example, consider a circular zone, of radius r
much greater than the zone width. Then:

2irr 2 tr.2 2 rH
H=—mp/2ms,H= —.-—rp%J2ms=—.

Hence, t = — -, if m, s, p are constant. A zone with radius r moves with
4r

speed m/4r in such a way as to reduce its radius. A circular zone will
contract, slowly at first, until it disappears in about 2r02/m generations. For
example, if there is a dispersal rate of 100 m per gen+, and there is an isolate
distributed as a disc 10 km across, it will be eliminated in about 5000
generations. Of course, very slight inhomogeneities in population structure,
or slight selective advantages, can prevent this. If the form contained in the
isolate had a 0l per cent advantage, and the zone were maintained by 10
per cent selection against heterozygotes, then it would advance unless it were
initially in an area less than 5 km across, in which case it would disappear.
This advance would probably soon be halted by variations in population
density, however.

(iv) Resistance to movement due to discrete population structure

In reality, organisms are often not continuously distributed, but live in
discrete demes. If the zone does not include many demes, the assumptions
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previously used break down; even if there are several demes in the zone, one
would expect a slight effect on its behaviour. The equilibrium will no longer
be precisely neutral, and certain zone positions will be favoured. Thus, a
definite amount of force will be needed to shift the zone, and it will not move
unless the density gradient or selective advantage driving it forwards exceeds
a certain critical value.

Let demes be spaced e apart, at x = n, — <n<cI.
Then, the potential function H can still be used to describe the zone, but
must be calculated as a sum, taken at demes, rather than a continuous
integral.

H = 2mp2( (Pi_Pi_i)2+sP?q?)
will be minimised,

if m and p are constant. If the effect of discrete population structure is small,
then the allele frequency is still given, to sufficient accuracy, by

p =
+(1+tanh(x_Y\/_)).

H can now be calculated as a function of the zone position, y; it will vary
cyclically, and the zone will tend to rest at a local minimum. The critical
force needed to move it from this equilibrium is that which will just coun-

teract the maximum slope in H, . Taking new coordinates
aY Jmax

X' = = 6' =
2m 2m 2m

and substituting for p

H(y') = - mp2.,J2ms (1 —tanh2 (n6'+y'))2

Taking the Fourier transform w.r.t.y,

— mp2J , ( vw(4+w2)
= - 4 \3sinh (xw/2) ..J8nJ

2 / w(4+w2) \ / 2jir= -mpJ2ms . _j5w—--—= - 2 \3sinh (7vw/2) ..J87rJ \ '
(j=...—1,O,1...)

((x) is the Dirac delta function).

2jir.There are thus a series of components of frequency w = ; jf <<v.2 (when
6

the zone includes many demes), the higher frequency components become
negligible, and so one need only deal with terms up toj Taking the
inverse Fourier transform,

H(y') = mp2%J (+ e"2' COS (')...)

/0 5
1 2 I Cit _2..—I =mp2msi—e'IYimax
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H Smp2msCompare, for example, with — = , for a selective imbalance S.
3s

Letting S be the critical selective difference between homozygotes needed to
move the zone,

S' e"'; this declines raPidlY as a' becomes <l.

1.2% 10-6 2x109 2xlO-37
(Y = 1/8', the number of demes in the zone; s = 10 per cent)

Thus, the effect of discrete population structure may be neglected when there
are more than one or two demes in the zone; the effect drops off very rapidly
if demes are more closely spaced than this. If there are fewer than one or
two demes in the zone, it would be feasible to use the stepping-stone model
directly; in considering zone movement, at least, the two approximations
overlap.

4. STOCHASTIC EFFECTS

A hybrid zone could move quite rapidly if, as is likely in nature, the two
parental types were not equally fit. However, local barriers to dispersal, or
reductions in population density, will prevent such persistent, directed
movements, even if the forces driving the zone forwards are quite large. In
practice, population structure is not constant from year to year, as has been
assumed so far. Can random changes in population sizes, dispersal rates, or
gene frequencies enable a zone to escape from local traps, and move large
distances?

To proceed, one first determines the distance the zone will move in
response to an arbitrary, small perturbation. If the covariance function* 0f
the perturbations is known (without necessarily knowing their complete
distribution), then the variance in zone position produced per unit time can
be calculated. Large perturbations cannot be dealt with, since their effects
are not additive. This is not a serious restriction, at least for wide zones
which include many demes. The relative importance of different perturbing
factors can thus be assessed, and the conditions which will allow the zone to
be mobile can be indicated.

(i) Response to a perturbation

We will first consider the stability of a hybrid zone to small fluctuations
in allele frequency. This section will deal with the more general case of a
hybrid zone maintained by interactions between several loci; the previous
deterministic results were derived from a study of a simple single-locus zone,
but they can easily be extended to the multi-locus case. The effects of
population structure are precisely the same, whereas the effects of asym-

* Thecovariance function of a stochastic process is the covariance between the values of
the process at two given points in space and time;

r(x, x': t, t') = < f(x, t)f(x', 1')>
(see Soong, 1973).
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metric selection coefficients are qualitatively similar. The stability of a zone
will only be calculated explicitly in certain simple cases—a single locus,
weakly interacting loci, or loci having dines of similar shape. For these
examples, we shall find the rate of movement of a zone due to sampling drift,
or to variations in population structure.

Let allele frequencies (or, if linkage is important, gamete frequencies) be
denoted by the vector , or by its elements 01. Let selection be weak, and
be defined by =

If the simple system =) has two or more stable equilibria, then a
hybrid zone may be possible, for some value of density gradient just sufficient
to counteract any selective imbalance (it may not be possible to form a
stable hybrid zone, however; for example, a recombinant formed in the zone
may prove superior to all other types).

From the basic equation,

= = 0

at equilibrium, taking population density and dispersal rate constant for
simplicity. Now consider small perturbations, y from this neutral equili-
brium, 0e; let 0 = Oa+O,. A constant y1(x) = DVi corresponds to a
shift in zone position of —D.

Transforming to y, the linearised equation around the equilibrium is (in
matrix notation):

=

where T, = =j), = 0(i j)
A. = = — A.(i =i)

k,i*k

(T is a diagonal matrix depending on dine shape, whilst A represents the
interactions between loci).

Any initial perturbation of a stable zone will result in a constant final

shift of y(x) = —D. Hence, if some integral of the form I = g .ydx can

be found which is invariant during zone movement, the final shift in zone
position will be given by:

D = — f g .
Ydx/J

gdx

since, eventually, I = — f g(x)Ddx.
0D

Now, integrating by parts,

I =
J

g.dx = J' ( g"_m(T)'+A) dx.
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So, for I to be invariant for all possible y:

g"—m(gT)'+gA = 0.

(ii) Solution for g in particular cases

(a) A single locus: If only one locus is involved, then g = o; is the solution,
since A = 0. When several loci interact to produce a hybrid zone, it is hard
to determine the stability except in especially simple cases.

(b) Glines of similar shape: If

(8sf as.'\01=O3Vi,j, and i——--j=0V',
.i \3O ao1j

(which will hold for most selection schemes) then the gA term cancels and
the solution is again g = 82. For example, suppose there are dines at many
loci, maintained to varying degrees by selection against heterozygotes, S,
and by epistasis between loci, E2. As long as S, + E1 is constant for all loci,
linkage is loose, and E1 = E11, the above conditions are satisfied. In this
case, the way in which each dine is maintained does not affect the contri-
bution it makes to zone movement.

(c) Epistasis between two linked loci: Suppose that a hybrid zone is main-
tained by epistatic selection between two loci (as in Bazykin, 1973). The
two dines will have the same shape (by symmetry), and so if linkage is loose,
the above conditions are satisfied, and g1 = g2 = 0'. However, if recom-
bination is comparable to selection, disequilibrium becomes important, and
a third variable is needed to describe the system. Let 0, 02 be the frequencies
of alleles P1, P2 respectively, and let 0 be the sum of the frequencies of
gametes P1P2 and QQ,2. Then, with epistasis c, and recombination r:

= !1'; (20j-.-l)(1--03)

= 0'+ (202—l)(1—03)

03 = !.0'+n(103)03+r[0i02+(1_Oi)(l_02)_O3]

By symmetry, g1 = g2. Hence, the equation for g is:

+ 3g) = 0

So, whatever the value of r,

'2 2g3 = — 01, g1 = g2 = 012r
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is a solution. The equation for g is only as simple as this when the zone is
maintained purely by epistasis; the introduction of selection against hetero-
zygotes renders it insoluble.

(iii) Generalisation to two dimensions

In one dimension, a quantity I can be found which is invariant during the
evolution of small perturbations, and so defines the final displacement of the
zone. If the zone is very long, however, the treatment must be extended to
two dimensions. A small perturbation, y(x,y) will rapidly lead to local shifts
in zone position, which will vary in magnitude along the zone. Since
curvature is minimised, these local deviations will eventually be smoothed
out to give a uniform final displacement.

Defining I(y, t) as before, as J y(x, y)gdx, one finds that (for a

m321
fairly straight zone) I = — —i. One can now find the final shift due to

2 ôy
continual small perturbations y(x, y, t) by using the Green's function for
diffusion and integrating over time.

I(, t) =f f J exp [—(y—z)2/2mt'] y(x, z, t').g(x)dxdzdt'.o - - sJ2irmt'

The local shift in position, D(y, t), will, disregarding the effect of recent
disturbances, be proportional to I(y, t).

D(y, t) = —I(y,
(x)dx)

(iv) Displacement due to random perturbations

We now have a formula which gives the displacement, D, of the zone
after some small change in allele frequency from its equilibrium value. The
covariance function of D, )

rD(Ay, t, At) = <D(y, t)D(y+Ay, t+At)>; rD(O, t, 0) =

(the rate of drift of the zone), can now be found if the covaraince function of
the disturbance, x, Ax, Ay, At), is known. This latter function
describes the variance in allele frequency produced by the perturbations v
and also their correlation over time and space. The zone may be disturbed
by sampling drift, by variations in population structure, or by varying
selection pressure. The first two possibilities will be considered below.

(a) Sampling drift: If there are a small number of individuals in the zone,
there will be some drift in allele frequency from generation to generation.
Consider a small area 8A. Inside this region there will be an effective
population of PE&4, where PE is the effective population density (Crow and
Kimura, 1970). Thus, the variance in allele frequency i produced per
generation is 0(1 — Oj)/2pE&4.* Fluctuations are not correlated between

* Therewill also be a contribution to the drift due to variation gene flow between demes;
this is of order mp'2/p, however, which is negligible for weak selection (see Nagylaki, 1978).
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areas or between generations, so that as &A tends to zero, and many genera-
tions elapse, r0 tends to (O(l — O)/2pE)(Ax, y, it). y, zt) is the
Dirac delta function, which is zero except for a unit singularity at the origin.
If loci are loosely coupled, fluctuations will not be correlated between loci,
and roo = 0 for i j. However, if disequilibrium is important, as may
often be the case, the covariance function will have the form R.3(i.x, y, st);
R is some matrix function of , and hence of x.

So, we now know the effect of sampling drift on allele frequencies. The
effect on y is given by the relation:

r2. = r0./O'O.

Taking the expectation of D(y, t)D(y+iy, t+t), one finds that:

rt+At ('t N't'D
rD(Ly, t, et) = I I I II exp [— (Ly — iz)2/2in(t1 + t2)]

Jo JO JJJ— .J2irm(t1+t2)

g1(x)r1(x, Ex, iz, M)g1(x+ix)dxdAxdzdt1dt2{ (5 j(x)dx)

Substituting t\x, Iz, zt) = R(x) 8(tx, t) and integrating,

J J exp
0 './4irmt' _________________

rD(Ey, t, i\t) = 2 (M>O).

($ (x)dx)
Several general questions can now be asked. Firstly, what sort of shape will
the zone have? Selection against hybrids will tend to straighten the zone,
whilst perturbations at different places will tend to move and bend it. A
series of superimposed bulges will develop, of typical length and size

(i (J gTRgdx))/($ gdx).

Since g is zero outside the hybrid zone, and R is proportional to w2/pE,/ 2 \+
where w is the zone width, the zone movement is proportional to ( —-_

'\mlrpE
after t generations. Eventually, however, the bulges become comparable in
length to the zone length, L (when 2mt L2). Then, it begins to move as
if in one dimension, and the typical displacement is (wt/PEL) . Thus,
movement is fastest for a short, wide zone containing few individuals. The
movement in one generation is approximately equal to the zone width
divided by the square root of the total number of hybrids; the effect of
sampling drift on a hybrid zone is likely to be very small.
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Secondly, how does the number of loci involved in the zone affect its
sensitivity to sampling drift? If disequilibrium is small, only the diagonal
elements of R1 will be significant, and so gR1g will be proportional

to the number of loci, n. However, the denominator, (f
9dX)

is- i
proportional to n2, and so the rate of drift is proportional to I/n. As more
independent loci become involved, the effects of drift at each locus tend to
cancel, so that zone movement decreases. If linkage is tight, however,
fluctuations may be correlated between loci, so that the drift rate may not
depend so strongly on the number of loci.

I will now examine two special cases, in order to illustrate and confirm
the above points. The equations for g can be solved for a single locus zone
maintained by heterozygote disadvantage, and for a zone maintained by
epistasis between two linked loci. The rate of drift can then be found,
although only for weak linkage in the second case.

Heteroygote disadvantage: It has already been shown that if s(0) =
10(1 — 0)(20— 1), a hybrid zone can form, with 0 = (1 + T)/2, where T =
tanh (x/w), and w = (2m/i) . Fora single locus zone, g = fl'2 (1 — T2)2/4w2
andr = (0(1 —O)/2 pE0'2)b(Lx, A, itt) = w2/(2pE(l — T2))& Hence, using
the above formulae, the rate of zone movement is:

= 3wt/ I OpEL for a short zone of length L, after t generations, and

3w /t\
<D2> = . ( — J for a long zone, 2mt<<L.2

'°PE \iJ
The typical displacement is proportional to t for a short zone, but only

to t for a long zone, since bulges in opposite directions tend to retard each
other. For example, consider a long zone 500 m wide, maintained by 10 per
cent selection against heterozygotes, and having a population density of one
per 100 in2; after 100 generations it will have moved (at any one point) about
30 in, but after 10,000 generations it will have moved only about 100 m. If
the zone were in fact only 25 km long, it would speed up after about 100
generations, and after 10,000 generations it would have moved about 250 m.
It seems that, unless the total number of hybrids is quite small, sampling
drift is of negligible importance.

Epistasis between two linked loci: The solution for g has already been
obtained for this case; it remains to find R and . If linkage is loose, only the
allele frequencies need be considered; by symmetry, 0 = 0, and so 0 =
02 = (1 + 1)/2. Since there is no disequilibrium, R12 = 0. The solution is
then just the same as in the previous example of heterozygote disadvantage,
except that, since two loci are involved, the distance moved by the zone
decreases by a factor J2.

If linkage is important, however, three variables are needed to describe
the system. g can be found in terms of the gamete frequencies, as can R, and
so the drift rate can be expressed in terms of .

1'o I/rci
= I gTgdx/( I gdxJD I \J—OD
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Now,

g = (02 —(e/2r)02)

(see previous section)

and, using the multinomial distribution,

R = 0(1 — 0)/O2 '(0 _O —(1—0)2)/O2 M201 — 1)(1 —O3)/00
1

(20—1)(1 —03)10103 2pL
03(1—03)/03

Hence,

=
JT [o2o3 — (2o — 1)2) — oo(2o -1 )(l —03)

4r2
o2o3(1

—°1 2PEL.

(J (o_ eO2)dX)
For most values of r, the equations for Q are insoluble. However, the first

order effect of slight linkage can be found. If <ci,

= (i+T)/2— (1_T2)4r w

03 = (1±T2)/2± (1_T2)(1_T2_ T2r w

and so

Kb2> = (3w/2OpEL) (+\ 105r

As linkage tightens, the zone becomes broader, and the rate of drift increases.

(b) Variations in population structure: We have seen that genetic drift is
probably of little importance in moving the zone. However, other forces
may be more important. Variations in dispersal rates and population
density from year to year are often large, and will cause random movement
of the zone. Treatment of these effects is rather more complicated than is
that of genetic drift, since deviations may well be correlated between years,
and between places. Therefore, only stochastic variation in population
density will be considered.

Let L = In (p), the logarithm of population density. Then, if L is small
there is an extra term in O1ofrnL'O. Therefore, yt = mL'Vi; the perturba-
tion of the zone by changes in population structure is the same for all loci.
This leads to a considerable simplification; letting rL(LXx, y, zt) be the
covariance function of the log, population density, L, and assuming that the
expected gradient is zero, one finds:
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ftj ('t2 rt't'co
I I III m2rL(Ax, Az, At) exp (—(Ay—Az)2/0 J° JJ— 2m(t1+t2)

— 2m(t1 + t2)) G'(x)G'(x + Ax)dxdAxdzdtr(Ay, At) —

(fT G(x)dx)
where G(x) = g(x).

The terms involving Ay and t are the same as before; the movement in
two dimensions will therefore be similar to that with sampling drift. Dis-
placements will be correlated over distances of order J2mt, whilst short zones
will move much faster than long ones. The dependence of drift rate on the
type of selection maintaining the zone is, however, quite different.

The behaviour of the zone in response to varying population structure
depends only on G(x), rather than on the individual g(x). In particular, if
variations in density gradient are correlated over distances much greater than
the zone width, so that rL'(Ax, Ay, At) is approximately constant through the
zone, the rate of drift does not depend at all on the form of G. At the other
extreme, when fluctuations are not correlated from place to place, the drift
rate is proportional to

(JT Gt2x)dx)/(J: Gx)dxy.
This is of the same order as 11w3, and so decreases as the zone gets wider.

It does not depend directly on the number of loci involved, so that multilocus
systems will be affected by population structure in much the same way as
single locus systems.

Combining the results of this section with those from the last, one finds
that sampling drift will be most important for wide zones, maintained by
weak selection, and involving few loci. These will be poor barriers to gene
flow, and so population structure is likely to be the dominant factor for zones
of biological interest.

To give a concrete example, consider a single locus hybrid zone, moving
in one dimension, and maintained by heterozygote disadvantage. Suppose
fluctuations in population density are correlated over distances of about X,
and times of about T:

rL(Ax, At) = v exp( — IAxUX) exp( — IAtI/T) (v = variance in L).

Then, the rate of drift of the zone is:

Kb2> = l28XTm2v
(X<w)

35w

2Tm2v= (X>>w).

Thus, the most effective types of perturbation are those which persist for
some time, and are correlated over distances similar to the zone width. For
example, suppose the zone is 500 m wide, and is maintained by 10 per cent
selection. If Xis I km, T is 10 generations, and the variance in population
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FIG. 2.—Zone movement due to fluctuations in population density.

density is 05, then the zone will move about 20 m per generation. This is
much more than would be possible with sampling drift alone; variations in
population structure are the main influence on strong hybrid zones.

(v) Density troughs

In the previous discussion, it was assumed that the zone was free to move
in response to small perturbations. This is highly unlikely; the two forms
will not have the same fitness, and so the zone will move until it is trapped
in a region of, for example, low population density. We have seen that quite
large selection differentials may be needed to allow it to escape from such a
trough. Can random forces free it, and allow consistent movement to
continue?

Here, only variations in population density will be considered, as before.
Changes in dispersal rate or selection pressure will have similar effects.
Suppose the zone is trapped in a shallow density trough, so that:

Xi-.

V
Covariance function (r( ))

A —3
X<ew X<<w

<> l28XTrn'V
Rate ofdrift of the zone35w3



THE DYNAMICS OF HYBRID ZONES 357

L"D2 1= L0 + —, where L" is a small constant, <<—i.
2 w

Then, the zone will tend to move towards D = 0:

D = — mL"D+ X(t), where X(t) is the stochastic perturbation in D.

Integrating this equation,

D(t) = exp (—mL"t) J exp (mL"t')X(t')dt'.
0

Let changes in L be independent of D, and have a covariance function
proportional to exp(— IAtl/T), as in the previous example. Then, letting
rx(At) = k.exp(—lAtl/T), where k depends on fL and G(x), by taking the
second moments of the last equation,

k(exp (—I At IT)— exp (—mL"At))
mL"T

rD(At) = —____________________________
(m2L"2— liT2)

var (D) = k/(mL"(mL"+ 1/T))
= L0+k/2m(mL"+l/T).

The hybrid zone will not be at the point of minimum population density,
but will be perturbed away from it by random forces. The expected height
above the equilibrium position is, if mL" T<< l,just Ic T/2m. Since the rate of
movement in the absence of constraints is 2kT, this excess density (<L> —
L0) is <D2 >FRFJEI4m. For example, if .Jm = 100 metres gen—4, a zone
which would normally drift 10 m in a generation will, when trapped in a
shallow density trough, usually be at a point with 0'25 per cent greater
density than that expected in the absence of stochastic forces.

(vi) Probabilitj of escape from a trough

How long will it take for a zone to escape from a barrier? In order to
answer this question, some form must be assumed for the probability dis-
tribution of density variations. The rate of escape will be calculated for
normally distributed fluctuations, since this is the only tractable case; in
practice, the distribution may be quite different.

For a gaussian stochastic process, the rate of crossing x = x0 is:
/ •2b I('X 2 2— i—— exp (—xo/2<x >) (Soong, 1973).

It \J <x >

The rate of escape from the region lxi x0 is one half this value. Applying
this to a hybrid zone trapped in a shallow density trough of width X, and
depth L, the rate of escape is approximately (using previous section):

exp (—öL/24),

where is the expected "height" above equilibrium. ( = — =
<D2>FREE(4m)).

So, as long as the zone is narrow, the rate of escape only depends on the
nature of the zone through the ratio If, as is likely, the zone only
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moves at a small fraction of the dispersal rate, quite small density troughs
can form very strong barriers. For example, suppose & = 100 mgi,
T = JO generations, and the free rate of drift is 10 m per generation. If such
a zone is trapped in a region 1 km across where density is reduced by 20 per
cent, it will take about 4000 generations to escape in either direction. It
seems unlikely that a narrow zone could move far unless the species were
distributed very evenly.

10

It.

<62
(m .gerc1"2)

5

0
0

2 ' Log. density4- 4
1km.

Fro. 3.—Rate of drift of a zone across a series of density troughs; suppose a zone moves 10 m
in a generation because of gaussian random forces, when it is in a uniform environment.
The random forces have a persistence, T, of 10 generations. If the population density
varies gradually in a series of troughs, 1 km wide and L deep (see diagram), then the
rate of drift will be reduced from the free value of 10 m.gen.

5. CONCLUSION

We have seen that hybrid zones can move at substantial speeds if there
is a selective imbalance between the two forms involved. However, zones
are also very sensitive to population structure, and can easily be trapped by
natural barriers. Random variations in population structure, and, to a far
lesser extent, sampling drift, will tend to free them, but unless the organism
leads a very uncertain existence, it seems unlikely that a zone, once formed,
will move far.

If hybrid zones are indeed so static, it is hard to see how they could ever
become established. On the other hand, once a zone encloses a large area,
it should persist for a considerable time, and one might expect such sharp
dines to be found quite often. These questions, and their implications for
ideas on divergence and speciation, will be examined in a later paper (Barton
and Hewitt, 1980).
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