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SUMMARY

Equations for the changes in genotype frequencies in two- and three-locus
incompatibility systems are given. Assuming equal allele numbers at all
loci, and equal frequencies of all the gamete types, as would be expected in
the equilibrium state, the equilibrium ratios of genotypes heterozygous at
different numbers of loci are obtained. Some genetic and evolutionary
implications of these results are discussed.

I. INTRODUCTION

IN the two-locus incompatibility system found in grasses (Lundqvist, 1954,
1961, l962a, 1965; Hayman 1956; Murray 1974), the two loci (usually
called S and Z) act so as to generate an incompatibility reaction only when
both the alleles carried in the pollen grain are matched in the stigma which
it has pollinated. The number of different pollen types is equal to the
number of gamete types that can be generated by two loci, and is thus

n2where n1 and n2 are the numbers of alleles at the S and Z ioci. Each pollen
type is incompatible with every genotype that can generate the gamete type
corresponding to that carried in the pollen. Since double homozygotes
cannot be formed, owing to the incompatibility system, the total number
of genotypes is n1n2(n1n2— l)/2, treating each double heterozygote as two
genotypes ("coupling" and "repulsion "). The number of singly and
doubly heterozygous types is also easily calculated, but even at equilibrium
with all single heterozygotes having the same frequency and all double
heterozygotes equal in frequency, the relative frequencies of single versus
double heterozygotes are not immediately obvious. Lundqvist (I 962b)
gives formulae for the frequencies of these two classes of genotype, in terms
of the numbers of alleles at the two loci, but their derivation is not given.
In trying to derive these results, I have obtained rather different ones.
The problem is quite complex and it seems that a general solution is possible
only when n1 n2.

2. Two INCOMPATIBILITY LOCI

Given the frequency of each genotype in one generation, it is easy to
write down the frequencies in the next generation. Assuming that the
two lad are unlinked, they are:
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(i) Single heteroygotes

= {g.[yLa + +

where the fja are the frequencies of single heterozygotes that are compatible
with pollen type i and that can generate gamete type j (andf1 is the
converse),
the fJb are the frequencies of double heterozygotes compatible with
pollen type i that can generate j (andfid is the converse),
g is the frequency of gamete type i.

and W is a normalising factor which enters in because some genotypes do
not contribute to any particular genotype, due to incompatibility.

(ii) Double heterozygotes

fkl = {k[ + ]+gi['4 +
Now if we assume that all the gametes are present at the same frequency,
and write p1 and p2 for the frequencies of individual single and double
heterozygote genotypes respectively, these equations become

/ a b\I
= (g+gJ)(\p1 +P2)/

W
(1)

P2 = (k+I)(Pi +P/_)/W
where a is simply the number of single heterozygotes that are compatible
with pollen type i and capable of generating gamete type j, and analogous
interpretations apply to b, e, andf
We then have

= p1 = 2ap1+bp2
P2 2epj+fp2

which gives a quadratic equation for o. The only problem is to determine
the values of the constants a, b, e and f. These depend on the numbers of
alleles. Before discussing this, it may be noted that linkage of the S and Z
loci does not affect the equations written above. This is obvious for the
contributions from single heterozygotes but is also true for double heterozy-
gotes if it is assumed that all gametes are equally frequent. This is because,
for each gamete type j to be generated, there is an equal number of geno-
types that contain j as a non-recombinant gamete, and that generate j by
recombination. If the genotype frequencies are equal, the terms b andf

(1—R R\ . .

are thus each multiplied by
—--—

+ where R is the recombination

fraction, and this factor is simply as for unlinked genes.
To determine the values of a, b, e andf, assume that there are n alleles

at each locus. (The reason why unequal numbers of alleles cannot be
dealt with is explained in the paragraph where the determination of b is
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described.) Thus there are n2 different types of gametes, and n2(n2— 1)
genotypes. The number of double heterozygote types is

— 1)2,

and the number of single heterozygotes is

n2(n—1).

Any particular pollen type, say i, is incompatible with any genotype
that can generate gamete i. Of the 2 (n —1) single heterozygote genotypes
containing j, one will also contain i, so there are 2n —3 single heterozygous
types compatible with pollen type i and capable of generating gamete
typej. Thus we have a = 2n—3.

We next consider the evaluation of e, the number of single heterozygotes
(k/j) that are compatible with i pollen, and can generate gamete j, which
differs from i at both loci so that a double heterozygote is generated. Sincej
differs from i at both the S and Z loci, and/i carries the same allele asj at one
or other locus, it is impossible for the genotype j/k to match the gamete i at
both loci. Hence i pollen is compatible with all single heterozygotes that
can generate a gametej that with i will form a double heterozygote. Thus

a = 2(n—1).
Now consider the progeny from double heterozygotes. Each double

heterozygote produces four gamete types, and will inhibit pollen grains
carrying any of those types. The number of double heterozygotes that
are capable of producing any given gamete type j is thus 2 (n — 1)2. We
need to know how many of these are incompatible with some particular
pollen type i. To determine b, we must assume that the progeny type i/f is
a single heterozygote. We can write this in terms of the individual S and

Z loci as - where either
Si Z'

S = S, Z, Z3, or Z = Z.
1ff (S Z) is a non-recombinant gamete, the genotype that produced it

(f/k = t will be incompatible with i pollen only if gamete type i can

be produced by recombination between j and k. (The possibility k = z is
ruled out by the assumption that i/f is a single heterozygote.) If the locus
at which i/f is heterozygous is the S locus, this implies that Z = Z5 and

incompatibility off/k with i pollen can result only if 5k = S. Thus f/k

in this case. If the number of alleles at the Z locus is n1, there are n2 —1

such genotypes. If the locus at which i/f is heterozygous is the Z locus,
there are similarly n1 — I genotypes which can produce j as a non-recom-
binant gamete, and are incompatible with i (where n1 is the number of
alleles at the S locus). Only if we assume n1 = n2 can we obtain the number
of genotypes that meet the requirements specified, as an expression that
does not depend on the particular genotypes in question. * This explains

*Alternatively, if n1 n,, the basic equations, e.g. (1), must be replaced by a set of
three equations, which yield two simultaneous quadratic equations, which cannot be solved
explicitly.
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the choice of n1 = n2 = n above, and in what follows. In that case, we
have (when j is a non-recombinant gamete) the result that n —1 double
heterozygotes are excluded from contributing to the formation of singly
heterozygous i/j progeny. Similarly, if j is a recombinant gamete, the
contribution from the double heterozygote i/k, where /c is the gamete that
with i can generate j by recombination, must be subtracted because this
type is incompatible with i pollen. There are n—i such genotypes. Since
no other double heterozygotes that can produce j are also incompatible
with i, we have

b = 2(n—1)2—2(n—1)

= 2(n—1)(n—2)
Finally, we require f, the contribution of double heterozygotes to the

frequency of i/i, where this type is itself a double heterozygote. If j is a
parental gamete produced by the genotype j/k, there are two ways in which
incompatibility with i can arise. First, k = i (one such genotype exists).
Second, k is such that i is produced by recombination. But this is impossible
because j differs from i at both the S and Z loci. Similarly, if j is a re-
combinant gamete, produced by a double heterozygote k/i, then the
reciprocal recombinant could be i, but this is the only way in which such a
genotype could be incompatible with i: the possibilities k = i or I = i are
ruled out, because it would then be impossible for k/i to generate j by
recombination, wherej differs from i at both the S and Z loci. Thus, of the
double heterozygotes that can generate suitable js, two are incompatible
with i. We therefore have:

f= 2(n—l)2—2
These values of the coefficients lead to the equation:

= (2)
4

Table 1 shows some calculated frequencies using equations (1). These
have also been checked by direct computer modelling of the detailed work-

TABLE I

Frequencies of single and double heterozygotes in the two-locus system,from equations (1)

Single hetcrozygotes Double heterozygotes

Number of Individual Individual
alleles at genotype genotype

each locus frequencies Aggregate frequencies Aggregate
(n) (p1) frequency (p,) frequency
2 0l25 05 0-25 0-5

3 0-02301 0414 0-03254 0586
4 0-00713 0-342 0-00913 0-657

5 0-00292 0-292 0-00354 0-708

6 0-00141 0-254 0-00166 0•747

7 0-000765 0-225 0-000879 0775
8 0•000451 O202 0-000509 0•798

9 0-000283 0-183 0-000315 0-816

10 0-000187 0-168 0-000206 0833
15 0-0000375 0118 0-0000400 0882
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ing of the incompatibility system. Unless n is very small, the frequencies of
individual singly and doubly heterozygous genotypes are very similar and
are both close to the reciprocal of the total number of genotypes. This
becomes apparent from equation (2) above, which, when (n+ l)28,
gives = 1. The formulae for the relative frequencies of single and double
heterozygotes has been used to deduce the expected probability of getting
an incompatible reaction, when a single pollen type is used as a tester;
this probability must depend on the number of loci and alleles (Lundqvist,
1962b), and could therefore be used as a method of estimating the number
of alleles in a system with a known number of loci. The results presented
here show that this purpose would be adequately served by simply assuming
that all genotypes are present in equal frequency.

3. THREE INCOMPATIBILITY LOCI

A similar treatment is possible of three-locus systems. Writing p1,
p2 and p3 for the frequencies of genotypes heterozygous at 1, 2 and 3 loci,
respectively, the analogue to equations (1) is:

2( m11 m21 m31— +P—-- +P3----

2 / m12 m22 m32'\P2—IP1+P2+P3I (3)W\ 2 4 8)
— 2 ( m13 m23 m33—

—p--- +P--- +P3-j
where m is the number of genotypes that are heterozygous at i loci that
would produce progeny heterozygous at j loci when pollinated by any
particular gamete type, and which are compatible with pollen of that type.
Arguments similar to those given above for two loci give the following m
values:

in11 = 3(n—1)—1

m12, m13 = 3(n—1)

m2 = 6(n—1)2—4(n—1)

m22 = 6(n—1)2—2

m23 = 6(n—1)2

m31 = 4(n—1)3—4(n—1)2

71132
= 4(n—1)3—4(n—1)

11333 = 4(n—1)—4
No doubt larger numbers of loci could be dealt with, but this does

not seem worthwhile in view of the restriction that equal numbers of alleles
must be assumed for all loci.

Substitution of these expressions into equations (3) leads to a pair of
simultaneous quadratic equations in the ratios p1/p2 and p3/p2. Although
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TABLE 2

Frequencies of the three classes of genotypes in the three-locus system, from equations (3)

Single heterozygotes Double heterozygotes Triple heterozygotes
Number of r
alleles at Individual Individual Individual

each locus frequencies frequencies frequencies
(n) (p1) Aggregates (p5) Aggregates (p,) Aggregates

2 002406 0289 004l67 0•500 005283 021l
3 0•00215 0•l74 000295 0.477 000323 0•349
5 0•000107 0080 0000l29 0387 0000133 0.533

10 0•00000l81 0•024 0•00000199 0242 0'00000201 0733
15 0000000l64 00l2 0000000l75 0l74 0000000176 08l5

apparently intractable analytically, these equations may be solved numeri-
cally for given values of n. From the form of the coefficients, it can be
seen that, as n tends to infinity, equations (3) are dominated on the right-
hand side by the contributions from p3; furthermore, these contributions
tend to equality with increasing n. It therefore follows that with increasing
numbers of alleles, the frequencies of each class of heterozygote tend to
equality, as in the two-locus case. Table 2 shows some numerical examples.
These have been checked by computer calculations of the (very complex)
incompatibility system with three loci.

4. Discussioi

The first conclusion that can be drawn from the results described above
is that unless the number of alleles is very small, the frequencies of all
individual genotypes are almost equal, so that the assumption that this
is the case is, for most practical purposes, quite adequate. Tables I and 2
also illustrate the further conclusion that if there are many alleles, the
aggregate frequency of double heterozygotes is larger than that of single
heterozygotes in the two-locus system, and triple heterozygotes in the three-
locus system are commoner than doubles. With a large number of alleles,
the population consists overwhelmingly of the highest-order heterozygote.
In studies of the genetics of incompatibility systems, there is always a possi-
bility that a system that is in reality a two-locus system will be mistakenly
thought to be a single-locus system (or, with more loci, that one or more will
be missed), simply because no plant heterozygous at all the loci is included in
the study (Lundqvist, 1975). The present results show that this possibility is
often quite unlikely, and indeed multiple heterozygotes were found in very
limited samples in several studies of multi-locus systems in grasses (e.g.
Hayman, 1956; Murray, 1974), Ranunculus acris and Beta vulgaris (Lundqvist
et al., 1973; Osterbye, 1975, 1977; Larsen, 1977). The results on the fre-
quencies of the single versus higher-order heterozygotes also suggest that, if it
is acceptable to assume that there are equal numbers of alleles at all loci, a
fairly good estimate of that number would be given by the frequency with
which single heterozygotes are found (see tables I and 2). Obviously, this
represents a great deal of work.

Another important result of the present approach to the population
genetics of multi-locus incompatibility systems is that it shows clearly that
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the basic equations for the genotype frequencies do not depend on the re-
combination fractions between the loci. This makes it seem unlikely that
there could be any selection for tighter linkage between the loci. It has
been suggested that the single-locus gametophytic systems may have evolved
from multiple-locus systems by a process of eliminating recombination
between the loci (e.g. Lundqvist, 1975). This does not seem likely, in view
of the argument given above. This conclusion is supported by the results
of computer calculations of a two-locus system with a modifier of the re-
combination fraction between them. These calculations yielded the same
genotype frequencies as given in table 1 (thus incidentally checking
equations (1)), and these frequencies were not changed when the re-
combination fraction was changed, nor did the recombination modifier
change in frequency, but remained at whatever frequency it was initially
assigned, except for transient changes due to the precise genotype fre-
quencies in the initial population. Finally, this origin for the single-locus
system is ruled outbythefollowingconsiderations. Imagineatwo-locus system
in which a modifier reducing recombination has spread, such that there
is now no recombination between the S and Z loci. Such a population
will not behave in the same way as a single-locus system. The two-locus
nature of the system will betray itself, for example, by the fact that double
heterozygotes will show incompatibility with four types of pollen, not two.
The only way that a single-locus system can be derived from one with multiple
loci is by fixation of alleles at all the loci except one.

Acknowledgments.—r thank B. Charlesworth for helpful discussions, and Professor A.
Lundqvist for reading and commenting on this manuscript.
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