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SUMMARY

The maximum likelihood method for estimating linkage disequilibrium from
genotypic data for randomly mating populations is studied. Instead of itera-
tive methods for finding a root of the cubic equation for one of the gametic
frequencies (Hill, 1974), it is recommended that the cubic be solved completely.
For data with some missing genotypic classes, it is further recommended that
explicit solutions for the cubic be used.

1. INTRODUCTION

Tssx degree of linkage disequilibrium in a randomly mating population
can be estimated from genotypic frequencies in a sample of individuals taken
from the population. It is appropriate to use maximum likelihood (ML)
estimation, and a comprehensive review of the methodology was given by
Hill (1974). In the case of two codominant loci and where coupling and
repulsion double heterozygotes cannot be distinguished, Hill provides a
cubic equation for the ML estimate of one of the gametic frequencies. He
suggests that a solution to this equation be found by numerical iteration.
This note presents two comments on the iterative technique.

In the first place, it is probably better to solve the cubic completely and
examine the likelihoods for all valid roots found. This will prevent any
problems of non-convergence, or of convergence to a valid root that does not
maximise the likelihood. Secondly, it is often the case that samples of
moderate sizes have some of the nine genotypic classes missing. It is then
often possible to provide analytic solutions to the cubic and further reduce
the dependence on numerical algorithms.

2. NoTATION

The notation of Hill (1974) is retained. The first locus has codominant
alleles A, a with frequencies p, 1 —p, while the second locus has codominant
alleles B, b with frequencies q, 1 —q. Gametic types AB, Ab, aB, ab have
frequencies jj, Jj2, f21, f22, respectively, and the usual measure of linkage
disequilibrium is

D =j —pq.
The notation for observed genotypic numbers as well as the genotypic
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TABLE 1

Observed numbers and expected frequencies

Observed numbers Expected frequencies

BB Bb bb Total BB Bb bb Total
AA 1v11 N12 N N1. AA f 2111112 112 P
Aa N N22 N23 .W2. Aa 2111121 2111122+2112121 2111112 2p(1--p)
aa N31 li,2 N,, N3. aa f1 2f21f,2 f (l—P)2
Total N.2 N.2 N.3 N Total q' 2q(l—q) (l—q)5

= 2N11+N15+N21 X15 = 2N13+N12+N22
X21 = 2N,1+N31+N32 X1, = 2N53+N25+N,2

frequencies expected under random mating are displayed in table 1, and
some summary measures X are also defined there.

It can be helpful to clarify the nature of linkage disequilibrium by
partitioning it into components for within individuals, D, and between
individuals, Db (Cockerham and Weir, 1977). If g11 denotes the frequency
with which genes A, B are found on different gametes within the same in-
dividual, then

D =f1 —g11, Db =g11 —pq.
In an obvious notation,

f1 —f(AABB) + jf(AABb) + iJ(AaBB) + f(AB/ab)
g11 =f(AABB) + jf(AABb) + f(AaBB) + 21f(Ab/aB).

The within-individuals component is also equal to half the difference in
frequencies of coupling (AB/ab) and repulsion (Ab/aB) double heterozygotes,
while the between-individuals component is a measure of the non-randomness
of gametic union. If.Db = 0, as assumed in this note, then D,,, = D. With-
out this assumption, the separate estimation of the two components from
genotypic data requires that the two types of double heterozygotes can be
distinguished. When the assumption is true, the expected frequencies in
table 1 are appropriate and the frequencyf11 can be estimated by maximising
the likelihood L where (Hill, 1974)

log L = C+ X logf5+N22 log (f11f22+f12f21),

and C is a constant.

3. Cubic LIKELIHOOD EQUATION

Using a "chromosome counting" method, Hill (1974) provided the
following cubic equation for the ML estimateJ1 off11:

= {x11 +X22J11(l —p—4+J11)/[J11(l —p —4+J) + (P —i'll) (—.f11)]}/2J'f

(1)
where

— (X11+X12-i-N22)/2X= (X1.+N2.)1JV'

4 = (X11 + X21 + N22) /2N = (N.1 + 2'N. 2)/N
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are the usual ML estimates of gene frequencies. Hill suggests that an initial
value

= (X1 — — X21 +X22)/4N+ j-—(1 —j) (1 —4)

= (22( +X22)/2X—4

be substituted into the right-hand side of (1) and the resulting expression
regarded as an improved estimate and itself substituted into the right-hand
side of (1). This iteration procedure is continued until stability is reached.
The final value j11 is the ML estimate, and the ML estimate of D is

13

The disequilibrium ö corresponding to Hill's initial value f11 is, apart
from a factor of JtIf(Jt[_ 1), the estimate suggested by Burrows (Cockerham
and Weir, 1977) for the composite measure A D + 2Db. Burrows'
estimator is A = ND/(X— I). When Db = 0 and there is random union of
gametes, Burrows' estimator is unbiased for A = D, so that Hill's initial
value should be close to the ML estimate of D. If D 0, it cannot be said
what is being estimated by the solution to (1).

As numerical methods are already being employed for the iterative
procedure of Hill, it seems preferable to use a numerical algorithm to solve
the cubic equation (I) and determine three rootsf1'(i), 1, 2, 3. Algo-
rithms to find the roots of polynomials are readily available in computer
subroutine libraries. The roots will be termed valid if they are real and
satisfy

max (0, + 4— 1) f1' (i) mm (, 4). (2)

The ML estimate of f11 is that valid root that maximises L. Note that the
initial value J can be invalid but such samples are unlikely. Unlike the
iterative method, the procedure of solving the cubic and examining all roots
cannot have problems of non-convergence or of convergence to the wrong
root.

One way in which non-convergence could result is when the quadratic
in the denominator of the left-hand side of equation (1) is zero. Suppose F11
is a gametic frequency that would cause such a discontinuity in the iterative
procedure. We can show that for F11 to be real, it is necessary that

(2_l)2+(24_l)2 >
but that F11 does not lie in the range of validity (2). Problems with such
discontinuities are likely to arise then only if the initial value for the iteration
procedure is not chosen carefully. The situation is illustrated by the
frequencies shown in table 2. These numbers provide two coincident dis-
continuities and the iterative procedure leads to the ML valuef (3) when

is used. An initial value off11 = 04 leads immediately to the root
f (2) and the iterations stop, as they would if f (1) or F11 were ever
reached. Because of the discontinuity, it is often found that intermediate
iterates are outside the range of validity (2).

It will be noticed that the marginal one-locus frequencies in table 2 are
not significantly different from Hardy-Weinberg proportions. Problems
with multiple valid roots, and convergence to the wrong root, seem to arise
when the marginals depart from these random mating frequencies. In
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TABLE 2

Frequencies to illustrate discontinuities

BB Bb bb

AA 154 81 8
Aa 37 14 3
aa 1 1 1

J(l) = 05239 f(2) 06750 f(3) 07277 f = 07233

ft = 09 4 = 08 F11 = 06

Range of validity

such situations, of course, there is evidence that D 0 and methods based
on Hill's likelihood should not be used. Blind application of the iterative
method however can lead to surprising results. The two sets of frequencies
in table 3 both provide three valid roots. For table 3a, the initial value

= /2 is also a root f (2) of the cubic and will be presented as the
solution by the iterative technique. This root is not a stable equilibrium
for the iterative method, however, and any initial value other than J will
give convergence to one of the two stable roots (±J2_X11/Y)/2. These
two roots have equal likelihoods that exceed the likelihood of f (2). A
different situation is provided by the frequencies in table 3b. The iterative
scheme leads to the ML rootf1 (3) provided the initial value is greater than
f (2). Initial values less tharif (2) lead to the rootf (1).

The log-likelihoods log L(i) are also shown in table 3 for each of the valid
solutionsf*(i) and it is clear that there are very small differences between
the likelihoods for these alternative solutions. Small differences in likelihoods
can exist even when the differences between corresponding estimates of

TABLE 3

Frequencies to illustrate multiple valid roots

(a) BB Bb bb

AA 12 3 3
Aa 3 54 3
aa 12 3 3

f(i) = 0l968 —f(2) = 02969 f(3) = 03969

log L(1) = C—2240017 log L(2) = C—225•3435 log L(3) = C—224'0017

ft = 0•5 4 = 0•5938

Range of validity 0f05

(b) RB Rb bb

AA 12 3 3
Aa 3 51 3
aa 12 6 3

f(1) = 02202 f(2) = 02726 f*(3) = 0•3745 3 = 02905

log L(1) = C—2272005 log L(2) C—2273635 log L(3) = G—2263820

ft 0•4844 4 = 05938

Range of validity 0 <f, j 04844
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linkage disequilibrium are quite large. In table 3b, for example, f (3)
provides an estimate of D = 00869 that is significantly greater than zero,
while f1 (1) provides an estimate 1 = —00674 that is significantly less
than zero.

4. SPECIAL CASES

With samples of moderate size, such as 100 individuals, several geno-
typic classes may be missing and in many cases the cubic equation (1) can
then be solved analytically. In 104 data sets for which D could be estimated
(i.e. both loci polymorphic), Laurie-Ahlberg and Weir (1979) found 10
cases in which JV22 was zero, 20 cases in which one was zero and eight
cases in which two of the X were zero. These data sets had between 91
and 134 Drosophila melanogaster individuals and represented pairs from 10
loci in samples from nine laboratory populations. In almost every case, the
zero classes arose because at least one of the two loci had an allele with a
frequency of greater than 085. With such frequencies, one homozygote at
that locus has an expected count of oniy 225 in a sample of size 100 and will
often be absent. Missing classes can even arise with less extreme frequencies.
In one case, the one-locus numbers were N1. =53, N2. 43, N3. = 3,
N.1 = 44, N.2 = 47, N.3 = 8, yet X22 was zero. The data set did exhibit
general agreement with Hardy-Weinberg frequencies at all loci.

Each of the three situations of zero classes will now be considered.

(i) N22 0

Clearly gametic frequencies can be estimated directly when the sample
contains no double heterozygotes. Either by inspection, or from (1),

= X11/2 1 = X11/2N—.H.

When gametic frequencies are available, Cockerham and Weir (1977)
showed how D and Db may be estimated and tests for the hypotheses
H:D,,, = 0, H:Db = 0 were established. In the present case, = 0 and

= .l [apart from a bias correction term N/(X— 1)] so that the assump-
tion Db = 0 may be tested.

(ii) X,., = 0

When one of the summary measures X is zero, the cubic (1) has one
root which may be found analytically. The other two roots follow from a
quadratic. These roots and quadratics are as follows:

= 0:f1 = 0, f*2+(W_T)f*+[Z+ ij2 (+_l)] = 0

f2+(w+r)f1+(z_4)
=0

= 0:f1 = , f*2+(W+flf*+(Z_ 2) 0

=0
where

W = (1 —2—2)f2, T = N22/4N, = /2.
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There is no way of predicting, in general, if the quadratics will provide
valid roots, or if they do, which of the valid roots is the ML estimate off11.
The likelihoods must still be evaluated for each valid root.

(iii) VJ, Kkj = 0

One root and a quadratic also arise in the following two cases:

= = 0: f1j = 0, f2 — + 2)f1+ j4 = 0

X12=X21=0: f=j,

but further consideration of these situations shows that disequilibrium must
be extreme. For = = O, = 1— 4andJj1 = 0, O = —(1 —)
while for X12 = X21 = 0, = and j = , 1 = (1 — j5). Otherwise,
two zero values provide three analytic roots:

X11 = = 0: f 0,, -4(l—)
X11=X21=0: f=0,,/J—(l—)
X12=X22=0:

X21=X22=0: f=,+4—l,
5. DISCUSSION

Maximum likelihood estimation of linkage disequilibrium from geno-
typic data is currently of interest to population geneticists, and efficient
estimation techniques are necessary. For very large samples, clearly from
Hardy-Weinberg populations, the iterative technique suggested by Hill
(1974) will probably be adequate, but it seems preferable to remove any
doubts by solving the cubic and examining all valid roots. The computing
required to solve a cubic is comparable to that for the iterations and is not
dependent on features such as the choice of an initial value. The computing
may even be reduced in cases when one gene has a high frequency and several
genotypic classes are missing.

It must be stressed, however, that ML estimation of linkage dis-
equilibrium from data in which the two classes of double heterozygotes are
not distinguished rests on the assumption of random mating. If there is
evidence of non-random mating, such as departures from Hardy-Weinberg
frequencies at either locus, the method should not be used. Instead, com-
posite measures such as A can be estimated. We would even recommend
that experimenters consider estimating A as a routine procedure. If there
is random mating, then A is unbiased for the usual measure, D, of linkage
disequilibrium, and it can be found directly from the data without need for
numerical computations. If there is not random mating, then A is the only
measure that can be estimated. It need hardly be added that the likelihood
established from table 1 also assumes the absence of disturbing forces such as
selection.

Acknowledgment.—Dr W. G. Hill made several valuable comments on a draft of this
paper.
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