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SUMMARY

A method based on the non-central chi-square distribution is developed for the
calculation of sample sizes required to reject, with given probability, models
of variation when they are "wrong ". The method is illustrated with
reference to simple alternative models of variation in MZ and DZ twins
reared together. Simulation of twin experiments finds the empirical power
in good agreement with that predicted by the method. Tables are produced
showing the sample sizes required for 95 per cent rejection at the 5 per cent
level of inappropriate models of variation. For equivalent cases it is always
found easier to reject an inappropriate simple genetical model of variation
than an inappropriate simple environmental model. For several frequently
encountered cases, more than 600 pairs of twins would be required to reject
inappropriate alternative models. The optimum proportion of MZ and DZ
twins in a sample will vary with the "true" model of variation but is most
likely to be between two-thirds and one-half of DZ twin pairs.

The possibility of detecting genetical non-additivity with the classical twin
study is investigated by theoretical power calculations and simulation. In the
absence of genotype-environment interactions, distributional skewness and
mean-variance regression in DZ twins are found to be more powerful tests of
directional dominance (or unequal gene frequencies) than the standard model
fitting procedure and these tests may be worthwhile in future studies.

1. INTRODUCTION

THE study of monozygotic and dizygotic twins reared together is the most
widely used design for the investigation of continuous variation in humans.
What is potentially detectable with classical twin studies and the procedure
for estimation and testing models of variation have been discussed extensively
in the literature (e.g. Jinks and Fulker, 1970; Mather and Jinks, 1971;
Eaves and Eysenck, 1975, 1976, 1977; Martin, 1975; Eaves, 1976 and 1977).
Briefly, between and within pairs mean squares are calculated for MZ and
DZ twins and theoretical models of variation are fitted to the four observed
mean squares by the method of weighted least squares, the goodness of fit
being judged by the chi-square test.

Models which assume no genotype-environmental covariance (see
Eaves, 1976) are usually subsets of the basic model for observed mean
squares shown in table 1. This includes sources of variation arising from
environmental differences within (E1) and between (E5) families, additive
gene action (DR), dominant gene action (Hn), and assortative mating, the
parameter A being the correlation between the additive deviations of spouses.
The basic model contains five unknown parameters but only four observed
statistics. Furthermore, the sum of the first two equations is equal to the
sum of the second pair, i.e. in the absence of certain kinds of genotype-environ-
ment covariation, the total variances of MZ and DZ twins are expected to
be equal. Thus there are only three independent equations and the fourth
degree of freedom merely tests the equality of the total MZ and DZ variances.
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TABLE 1

Basic model for mean-squares of twins reared together

E1 DR HR

MZ between 1 2 1+

within 1

DZ between 1 2 +
within 1

If a simple explanation in terms of say, two parameters, fails to account for
the observations we shall be forced to admit a more complicated model.
However, different three parameter models which assume equality of
CTMZ and are inseparable by a simple statistical test of the model with
twin data so we shall be unable to discriminate between alternatives unless
one gives clearly nonsensical parameter values.

As a first step in the analysis of any set of twin data we routinely fit the
following set of models, each of which is a subset of the basic model:
E1, E1E2, E1DR, E1E2DR, E1DRHR. Occasionally, if we have reason
to believe that assortative mating is important we note that, in the basic
model for twins reared together, E2 and the term DR(A/( I —A)) have the
same coefficients and so are inseparable. Thus, in fitting the E1E2DR model
we should really rename E2 as B (for extra between families variation) where

B = E2+4DR(_-_)

If we assume E2 = 0 we may then obtain an estimate of A (which may or
may not be "sensible "). Alternatively, we may fit an E1DRA model by
non-linear weighted least squares (see Eaves, 1975) and obtain a direct
estimate of A, assuming P22 is absent. If we have an estimate of the pheno-
typic marital correlation s, we may estimate A as h2p. and hence estimate
how much of B is E2 and how much is extra additive variance produced by
the linkage disequilibrium which accrues from assortative mating.

The restrictiction to three parameter estimates means that we can never
tell directly the relative importance of B and HR and we can see that it is
not possible to separate their contributions if both are present. Eaves
(1970a) showed that if we fit the E1BDR model when both B and HR are
present then

DR =
and

B = B — *HR

Conversely, if an E1DRHR model is fitted when both B and HR are present
then

'R =DR+6B
and

fIR = HR—8B

Thus, if B> *HR then any estimates of HR will be negative while if B < HR
any estimates of B will be negative. By fitting these two models and corn-
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paring the signs of the third parameter estimate we should be able to make
some weak inferences about the presence of E2 (or assortative mating) and
HR. These inferences are discussed in detail by Eaves (l970a). It can be
seen, however, that this is a poor design for the detection of non-additive
genetical variation and this will be confirmed by the power calculations
below.

Even where sources of variation are potentially separable by the twin
design there is no point in carrying out a twin study if the sample size is too
small to give a reasonable probability of discriminating between alternative
models of variation. This is the problem of power, the probability of
correctly rejecting the null hypothesis when it is false. If the power of a
study to detect a given effect is low and in fact we do not find evidence for
the effect in our sample then we should be foolish to infer that the effect is
not present in the population. Such errors are all too common in the
literature (e.g. Scarr-Salapatek, 1971; Adams, Ghodsian and Richardson,
1976).

This consideration was first quantified in biometrical genetics by
Kearsey (1970) who calculated the sample sizes required to detect dominance
with different experimental designs. In an attempt to introduce an element
of rational planning to investigations of individual differences, Eaves
considered the relative merits of the " minimal data set" designs laid down
by Jinks and Fulker (1970) which would allow separation of the major
sources of variance. He calculated the proportions of the different relation-
ships which would yield the maximum information in the separation of
additive from dominance variance (Eaves, 1969) and E1 from E2 variance
(Eaves, l970b). Later he went on to consider the power of the different
designs and the sample sizes required to detect effects of given magnitude
from the minimal data sets (Eaves, 1972). The power of a classical twin
study without diagnosis of zygosity of the same sex pairs but which relied on
the opposite sex pairs for an estimate of the DZ intra-class correlation, was
also considered (Eaves and Jinks, 1972) and it was shown that sample sizes
would need to be about three times bigger to achieve the same power as a
sample in which zygosity was known. The power of comparisons between
estimates of heritability from subsamples was shown to be negligible under
such conditions.

The large samples required to allow comparisons of heritability between
populations were confirmed by Klein (1974) who calculated the power of
four relationships (offspring-midparent, offspring-single parent, full-sibs,
half-sibs) to detect genetic components of given magnitude (see also Klein,
DeFries and Finkbeiner, 1973).

So far then, some quite detailed theoretical power calculations have
been made for human experimental designs which are seldom (if ever) used
but nobody has given much consideration to the power of the classical twin
study, the most common design in human biometrical genetics.

Because Eaves (1972) was considering designs in which the main sources
of variation were at least potentially separable, his approach was to calculate
the sample sizes required to detect given effects with a specified probability.
In the classical twin study, we have seen that we can estimate at most three
parameters and that these will be confounded with other effects which may
be present but cannot be estimated. It will be more useful, therefore, to
calculate sample sizes required to discriminate between competing models.
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Initially we shall be concerned to answer fairly simple questions such as:
"How many pairs do I need for an E1 model to fail when DR is also
present? ", "What is the best proportion of MZ and DZ pairs to detect E2
against a background of E1 and DR? " and we shall leave the complications
of non-additivity and directional effects until later. Our first approach is
based on the non-central chi-square distribution and was suggested by power
calculations for the rejection of the null hypothesis of Hardy-Weinberg
equilibrium (Lewontin and Cockerham, 1959).

2. THE POWER OF DISCRIMINATING BETWEEN SIMPLE MODELS

(i) Theory
If we have a set of observed mean squares 01, their expected values

calculated on the basis of the" true "model of variation F1 and the expected
values calculated on the basis of a "false" model, E1, then we wish, for
each i to test the null hypothesis

H0: f(Q) =
If H0 is true and the degrees of freedom v are large then O N(E1, 2E?/v1)

v.(O.—E.)2approximately. We assume H0 is to be tested by the statistic

which is approximately chi-square with one degree of freedom. The pwer
function of this test is not known for all alternative hypotheses. Conse-
quently we follow Mitra (1958) and consider the limiting power function of
the test for large sample sizes and alternative models not too far from the
hypothesised model. To express this idea suppose

H1: (0) = F = Ej+1a1/Vvj
where = 'Vv1(F1 — E) is the deviation between the two models. Given
that v1 is large, then if H0 is true

0—'N(E, 2E/v)
while if H1 is true then

N(F, 2F/v1) 'N(FØ (2E/v1)(l + o(vT )

where o(v) denotes a term of the order of v.
Thus

.Jv1(O1—E) N (f(F_E) 1+ o(v\ J2E
and the asymptotic power function of

— E1)2

2E
is non-central chi-square with non-centrality parameter Vi and

one degree of freedom. In general, to test

H0:(O) =Eagainst
H1: e (0) = F
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we use

= v1(O—E1)2
(s statistics, p parameters) (1)

with limiting power function being non central X-,, with non-centrality
parameter

= v.(F1 — E1)2

2E?

The larger the d.f. v, the larger the deviations may be from E before the
distribution departs from non-central chi-square.

(ii) Calculation of required sample size

Given that we know the true components of variation contributing to
the population variance we want to know how many pairs of twins are
needed to be (95 per cent) sure of rejecting alternative wrong models (at
the 5 per cent level of significance). Our procedure is as follows:

(a) Take the " right" model and obtain the expected "observed mean
squares" for given values of population parameters.

(b) Obtain the WLS solutions (for unit total sample size) for the para-
meters of the "wrong" model.

(c) Obtain the weighted residual sum of squares (as in equation (1)
above) for the fit of the "wrong" model and use this as a non-
centrality parameter t' for s—p d.f. where there are s statistics and
p parameters in the "wrong" model.

(d) Look up the non-centrality parameter in tables (Pearson and Hartley
1972; Vol. 2, table 25) for required power, i.e. A(0.05,0.95,

(e) Obtain required sample size

N=
To illustrate the procedure we shall work through a specific example, but

see Eaves and Eysenck (1975) for a detailed description of model fitting by
weighted least squares.

For a total population variance of 10, let us suppose that the real com-
ponents of variation are

— (E1 — (0.5
VA) \o•5

i.e. half E1 and half additive genetic (VA = 1DR). We shall consider an
experiment where half the total sample is MZ and half DZ.

i.e. NmzIN = NdZ/N = 05
so each weight

O5N Nw.. = =
2x? 4x
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The "right" E1 VA model matrix is

B=( 1.5)1 05
and the expected " observed " statistics

1 50

x=BD=
O75

We now try to fit the "wrong" E1E2 model to the data.

A=(! )
and after four iterations, the final solution

= (A'WA)1A'Wx = (A'WA)A'WBD= () = ()
from which we can calculate the expected mean squares and residual S.S.
as follows.

M.S. J'f/J'.f Weight "Observed" Expected
MZb 05 0•1322 l•50 l•375
MZ 0•5 064O0 0•50 0625
DZb 0•5 0•1322 l25 l375
DZ, 0•5 0-6400 0•75 0-625

X) "= = 00241

The non-centrality parameter obtained for unit sample size in this experi-
ment is A' = 0-0241. From the table we find the non-centrality parameter

095,2) = 15443

Therefore the sample size required for 95 per cent power of rejecting the
"wrong" model at the 5 per cent level of significance in this experiment is

N = A = 15.443 = 640
A' 0-0241

i.e. 320 pairs of MZ twins and 320 pairs of DZ twins.
Since

= (A'WA)1A'WBD
the matrix R = (A'WA) 1A' WB will tell us the contribution of each of the
"true" population parameters (IF) to each of the estimated parameters of
the "wrong" model. For this example

(1.00 0-25R =
075
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so

E1 = El+*VA
E2= IVA

(iii) Testing the accuracy of the method by a simulation experiment

It has been shown that the validity of the method depends upon the
magnitude of the deviations, of the "false" expected values E1 from the
"true" expected values, F1.

In order to test this validity we simulated many replicates of the same
experimental design and so compared the observed power of rejection at a
given level of significance with that expected from the calculation based on
non-central chi-square.

It was decided to simulate the above experiment but with a sample size
predicted to give 50 per cent power of rejection of the E1E2 model at the
5 per cent level of significance. From the table

0-50,2) = 4957
so

4.957
N(0.05,o.50,2) =

0-0241
= 206

i.e. 103 pairs of MZ and 103 pairs of DZ twins.
The simulation program actually samples individual pairs of twins from

a population with specified components of total variance. It was adapted
from a program written by one of us (M. J. K.) for the simulation of various
aspects of polygenic inheritance and experimental design in biometrical
genetics. Genetical variation is simulated on the basis of two alleles at
each of 10 loci of equal effect which are in linkage equilibrium. The
dominance effects of the loci and frequencies of their alleles can be varied.
Two parental genotypes are sampled at random from the population and
from these zygotes are sampled—one for MZ twins and two for DZ twins.
A common between families environmental deviation is added to the
genotypic score of both twins and a separate within families environmental
deviation is sampled for each individual thus completing the phenotypic
score. The scores for the samples are scaled to have mean 100 and variance
225.

For each set of the 103 twin pairs, MZ or DZ, so generated we computed
the within and between pairs mean squares. We simulated 500 experiments
each of 103 MZ and 103 DZ pairs drawn from a population in which

= VA = 0-5. To each of the 500 sets of four meansquares we fitted the
E1E2 model and calculated the residual X)-

Pearson and Hartley (1972, Vol. 2, p. 54) give the expectations for the
moments of the non-central chi-square distribution. These are given in
table 2 with the expected and observed values of the moments for the
distribution of the 500 simulated X)'S. The observed mean, variance and
skewness do not differ significantly from their expected values for the
expected non-centrality parameter. The kurtosis is less than expected but,
since the variance of the estimate of kurtosis is not available, we cannot
say whether significantly so.
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TABLE 2

Observed and expected moments for the distribution of the
500 X) values

Statistic Expectation Expected Observed
Mean v+A 6957 6657
Variance 2(v+2A) 23828 21112

Skewness
8(v+3A)°

1-346 1•351
(v+2A)3

12(v+4A)Kurtosis 3+ 4845 3561
(v+2A)

v = d.f. = 2.
A = is the expected non-centrality parameter = 4957.

As a more direct test of the hypothesis that the residual chi-squares
follow the expected non-central chi-square distribution, we have predicted,
on the basis of the expected distribution, that 50 per cent of the observed
residual chi-squares should be significant at the 5 per cent level, i.e.
X)>5991. In fact we find the following:

X2) <599l X2) > 599l

Observed 257 243
Expected 250 250

X1) = 0-4

so the observed power of the test is remarkably close to the predicted.
However, we should like to know whether the observed distribution of

the chisquares is in agreement with the predicted distribution throughout
the whole range. From Pearson and Hartley (1972, Vol. 2, Table 24), we
can interpolate the 1 per cent, 5 per cent, 95 per cent and 99 per cent points
of the expected distribution of X, where v = 2, oc = 005 and the
non-centrality parameter A = 4957. These points are:

1% 5% 50% 95% 99%
0-21 088 5.99 16•15 2196

and the observed and expected numbers in the intervals are given in table 3.
The observed and expected distributions agree well suggesting that the
observed distribution follows the expected throughout the range.

TABLE 3

Distribution of the 500 simulated Xs)'

Interval % <1 1-5 5-50 50-95 95-99 >99 Total
Observed 2 21 234 222 18 3 500
Expected 5 20 225 225 20 5 500

Xs) = 325.
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This simulation experiment should give us considerable confidence in
the ability of the non-central chi-square calculations to predict the power
of a given experiment and the sample size required for a given probability
of rejection of the sorts of models we are considering. However, outside the
range of comparable models, the theoretical distribution obtained by
limiting power may not apply to a good approximation if p =V — E)
is large. Although we shall calculate sample sizes required for 95 per cent
power, the numbers required for lower power (fi), or the approximate power
obtained by using lower numbers, can easily be obtained by observing that

N(p) = N(0.95) ( v) )
095, v)

The values of A, ,, for = 005 can be obtained from table 25 in
Pearson and Hartley (1972, Vol. 2).

(iv) Results

We shall consider sample sizes required to discriminate between very
simple models involving E1, P22 (including additive variance due to assor-
tative mating) and V4. The problem of detection of dominance will be
left until the next section. We shall calculate sample sizes required to reject
false hypotheses in the following combinations of " true " and "false"
models of population variance:

True " model " False" model

E1E2
P21 V4

E1VA E1
E1E2

E1E2V4 E1
E1E2
E1 VA

For the "true" E1E2 and E1 VA models we shall calculate sample sizes for
E1 = 01 —O9 (in steps of 02) and for the E1EIVA model, all combinations
of E1 = 01—09 (0.2) and P22 = 0l—O'9 (02) with VA forming the non-
zero remainder. For each combination of " true" parameters, calculations
will be made for samples comprising a proportion of MZ (PMZ) twins in
the range O1-09 (0.2).

The required sample sizes for the "true " E1E2 and E1VA models form
tables 4a and b respectively and those for the three " false" models fitted
to the " true" ESEIVA model are found in table 5.

Where the situation is really E1E2 or E1 V4, the sample sizes required to
reject the E1 model are not very large, provided E1 does not exceed 70 per
cent of the total variance. Against a background of additive genetic
variance this becomes easier the larger the proportion of MZ twins in the
sample. Since the expectations for MZ and DZ mean-squares are the same
when an E1E2 model is appropriate, the proportion of MZ pairs in this
experiment is immaterial.
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TABLE 4

Total number of pairs required for 95 per cent power of rejection of false hypotheses at 5 per cent level when " true

model is (a) E,E2, (b) E1VA

(a) True model E1E,
False Model

E1 ESVA

True model pMZ pMZ

E1 E2 0l 03 05 07 09 0.1 O3 05 07 0•9

0•l 0•9 22 22 22 22 22 33 45 67 119 385
0•3 0•7 36 36 36 36 36 73 115 164 278 854
05 05 69 69 69 69 69 298 325 430 696 2055
07 03 191 191 191 191 191 1491 1229 1485 2289 6534
09 0l 1718 1718 1718 1718 1718 20904 13508 15119 22534 62948

(b) True model E1VA

True model
E1 E1E,

E1 VA

0I 0•9 66 45 34 28 23 388 118 63 40 36
O•3 07 108 74 57 46 38 886 313 208 186 303
0•5 05 212 145 110 89 75 2181 852 640 670 1344
07 03 588 402 306 247 207 7026 2914 2356 2683 5955
09 01 5284 3615 2748 2216 1857 68016 28982 24232 28784 66800

One of the most common problems in the analysis of twin data is deciding
whether the E1E2 or the E1 VA model is the more appropriate. For a given
E1 we can see that in the most likely cases it is usually easier to reject an
E1VA model when the situation is really E1E2 than to reject an E1E2 model
when additive genetic variation forms the non-E1 variance. A realistic
requirement might be to discriminate between the two models when half
the variance is E1 and the remainder is either 122 or VA. In this case we
should need 430 pairs to reject the E1 VA model when the remaining variance
is 122 but half as many pairs again—640—to reject the E1E2 model when the
population variance is really half E and half VA. Thus for a given sample
size, the E1E2 model will more often be incorrectly accepted as an adequate
hypothesis than the E VA model, i.e. the twin method is inherently biased
against the detection of genetical rather than cultural variance.

The optimum proportion of MZ twins in the sample varies with the
"right" and " wrong" model and the " true "

parameter values. In some
cases it is better to have a low proportion of MZ pairs, in other cases a high
proportion and in others the optimum is equal or near equal proportions.
Since rejection of a false 121122 model is the more difficult objective, we should
settle on the proportion of MZ pairs which will achieve this most efficiently
and, for intermediate heritabilities, this appears to be about equal pro-
portions of MZ and DZ pairs.

Turning now to the rejection of inadequate models for a situation in
which the appropriate model is really E1ESVA (table 5) we can see once
again, that rejection of the E1 model is reliable in all cases with fairly small
samples. Rejection of the two-parameter models is more difficult and will
depend upon the proportions of E2 and VA. General trends from the table
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are too numerous to discuss so we shall concentrate on one specific practical
example. There are now three twin studies (see Martin and Eysenck, 1976)
which suggest that variation for the attitude trait Radicalism is approximately
one-third E1, one-third VA and one-third E2 (possibly including assortative
mating). We should like to know how many pairs, and of what composition,
are required to best reject both the E1E2 and E1 VA models as summaries
of this more complex situation. The case corresponding most closely to this
in the table comprises 03E1, 03E2 and 04VA and we can see that the best
individual solutions are 455 pairs (70 per cent MZ) to reject the E1E2 model
at the 5 per cent level in 95 per cent of experiments and 645 pairs (10 per cent
MZ) to reject the E1VA model. With about 700 pairs (660-7 18) comprising
30 per cent MZ pairs we should have about a 95 per cent chance of rejecting
both two-parameter models and this would be the best compromise design.
This would be ideal in a random sample since MZ pairs represent about
one-third of all twins in the population. However, they represent nearer
two-thirds of the total in most volunteer samples.

These " required number" tables should be a useful tool for workers
wishing to plan twin studies with specified power to detect given combina-
tions of genetical and environmental variance. The numbers themselves
are sobering for we can see that to achieve 95 per cent power of rejecting an
E1E2 model when the heritability is actually 50 per cent requires over 600
twin pairs. We should not be too depressed, however, since twin studies
of this size are now becoming quite common and /3 = 95 per cent is a power-
ful experiment. From the method given above we can calculate that for
80 per cent power we would need about two-thirds this sample size and for
50 per cent power about one-third this size.

3. THE DETECTION OF NON-ADDITIVE AND DIRECTIONAL EFFECTS

So far we have only considered the power of models to detect additive
genetical variance, E1 and E2/assortative mating. We have seen that the
prospects for detection of dominance by model fitting to the mean-squares
of a classical twin study are poor if there is any E2 or assortative mating
present. This is unfortunate, for a knowledge of the extent and directional
properties of non-additive variation allows us to make inferences about the
selective history of a trait (Mather, 1973). However, it is possible to detect
non-additivity which has a systematic directional effect by means other than
model-fitting.

Jinks and Fulker (1970) introduced the test of regressing MZ pair
variances on the corresponding pair means in order to detect systematic
G x E1. The same test can be used in DZ twins to detect G x E and other
non-additive effects acting predominantly in one direction. Such directional
effects are often reflected in and can therefore be inferred from skewness
of the phenotypic distribution.

Skewness in the distribution and mean-variance regression in DZ twins
can be produced by (a) systematic G x E interaction, (b) genetical non-
additivity (dominance or epistasis) acting predominantly in one direction,
(c) a net inequality in the frequencies of increasing and decreasing alleles.
We shall examine each of these in turn. The skewness and mean-variance
covariance tests have general properties that extend beyond DZ twins and
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have been used in other genetical designs to detect G x E and epistasis
(Perkins and Jinks, 1971; Pooni, Jinks and Cornish, 1977).

(i) G x E interaction

Jinks and Fulker (1970) showed that the regression of pair variances
on pair means in MZ twins reared together is a test for systematic G x E1
or E2 x E1 interaction. The regression can contain non-linear as well as
linear terms but for practical purposes there seems little point in going beyond
quadratic terms. When such interactions are detected the worker will
sometimes choose to simplify the analysis by rescaling the data to remove the
interaction. Often, however, there may be some sound reason for keeping
the chosen scale and accepting the complication of the interaction that this
entails (e.g. Martin, Eaves and Eysenck, 1977). The power of the regression
test for G x E1 and the rationale of rescaling have been discussed extensively
elsewhere (Eaves, Last, Martin and Jinks, 1977). We have found that
systematic G x E1 accounting for as little as 5 per cent of the MZ within
pairs variation can be detected with only 95 pairs of twins (Martin, 1977).

Within DZ pairs reared together, G x E2 interactions may be found as
well as the G x E1 and E1 x E2 found in MZ pairs. Thus, even if G x E1
and E2 x E1 interactions are removed by scaling, any remaining mean-
variance regression in DZ pairs could be due to systematic G x E2.

(ii) Dominance

There are two tests for directional dominance (or epistasis) in the absence
of G x E which can be applied to data from the classical twin study: sample
skewness and regression of DZ pair variances on pair means. These follow
closely from the third degree statistics considered by Fisher, Immer and
Tedin (1932). We wish to find the power of these two tests, either by
theoretical calculation or empirically by simulation, and to compare these
with the power of detection of dominance by model fitting to second degree
statistics.

In a population with equal gene frequencies and in the absence of
G x E, and epistasis, the skewness of the phenotypic distribution due to
dominance at a single locus

—*dh=
(2)*

where a = j-d+*h? (ignoring any environmental effects). Note that if
h is positive (i.e. dominance is in the increasing direction) then the skewness
is negative and vice versa. For k loci of equal effect and with alleles of equal
frequency

— —1kdh1g1 — (ka
so that the coefficient of skewness is inversely proportional to k and will
tend to zero as the number of loci increases. Nevertheless, we shall calculate
the power of detection of skewness for the moderately large number of 10
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loci which are specified in the simulation program. For total variance
= ka+ E1 +E2) = 225, broad heritability h = 0.9, dominance ratio

0-5 and 10 loci, we calculate d = 6-0 and h = 30. So
103 V4 L i i cm

(g1) = =' = UIU = —0-240
3375

Similarly for

= 05 and h/d1 = FO, é1'(g1) = —013

The variance of a coefficient of skewness is approximately 6/n given a
normally distributed population so for sample size 500

a = /—-=01191
\1500

and for sample size 1000

a =91 J 1000

However, given that we are sampling from non-normal populations we
might expect that the expected variances, and hence the theoretical power
calculations, are inappropriate. In practice we find that the empirical
standard errors (s91) are close to their expected values so we may be
reasonably confident that the non-zero skewness is not appreciably affect-
ing the power calculations.

Since we can obtain both positive and negative values of g1, we shall
only accept that there is significant (5 per cent level) skewness if

x=Qi_>F96 or x-<—F96
a91

For given sample size we want to find the probability that the null hypothesis,
x = 0 will be rejected.

The power of the test is the probability that 0 (here g1) > 1 -96a or
O< — I -96a given that 0 =0. Hence the power of the test is the area under
the curve for a variable B which is N(O, a2) corresponding to values of
O>l-96aorO< —196a. Ifc= (6_6)/asothatcisi\r(0, 1)whenO = 196a
then c = 196—x, or when 0 = — l96a, c = — l96—x. Thus the power
of the test is the area under the curve for a variable c which is X(0, 1) for
values of c> l-96—x or c< —196—x. If 0 0 then c> l96—x is the
probability that we detect 0>0 on a two-tail test and c < — I 96 —x is the
probability that we detect 0 <0.

In the present example

—0240x=
008

so the probability of detecting significant negative skewness as a two-tail
(5percent)testistheintegralfrom —o to —1-96—x(= 1.04),i.e. P = 085.
The chance of (wrongly) detecting significant positive skewness is less than
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one in a million. If we require the power of the test to be 095, then we
want —196—x = 165, i.e. x = —361 whence

= —O24 = O0664
—361

so we require n = 1364, or nearer 700 pairs of twins.
Thus it is possible to calculate from theoretical considerations the power

of the test for skewness (and so for dominance) for given sample size and
hence the sample size required for given power. We can compare the
theoretically derived power with that found empirically by simulation.

In the mean-variance regression test, on the other hand, the regression
coefficient b is not dependent on k, the number of loci. It can be shown that,
for equal allele frequencies and no G x E, the contribution of a single locus
to the expected regression coefficient of DZ pair variances on pair means

b = 32
(ignoring environmental effects)

d + h
and that for loci of equal effect and alleles of equal frequency this will be a
constant, independent of the number of loci. Similar considerations apply
if the mean-variance correlation is chosen as the summary statistic.

Table 6 shows the results of computer-simulated sampling of twins from
populations with equal gene frequencies but of differing broad heritabilities
(h), different degrees of dominance (h/d1) and different proportions of
E1 and E2 (E1/ VE where VE = E1 + E2). For each combination of values
of these three parameters 25 replicates of 500 MZ and 500 DZ twin pairs
have been sampled.

The theoretical value of g1((g1)) is given for each combination of heri-
tability and dominance ratio. The expected power of detection of significant
g1 is given separately for MZ (based on n = 500) and DZ (n = 1000)
twins. The mean g1 (g1) and its observed standard error from the 25
replicates (s1) is given for both MZ and DZ twins. The number of
replicates out of 25 where significant (5 per cent, two-tail test) g1, is detected
is given: the theoretical s.e. of 008 for DZ and 0ll for MZ is used in
judging the significance. It can be seen that the observed numbers of
significant g1's (gj) agree well with the theoretical power of the tests

For each replicate the within pair variances were regressed on pair
means for both MZ and DZ twins. Both linear and second degree regressions
were carried out but the number of significant quadratic regressions was at
chance level in MZ twins and little above chance level in DZ twins so only
the number of significant (5 per cent) linear regression coefficients out of
25 replicates is given for MZ and DZ twins (j3). These constitute empirical
estimates of the power of this test of directional non-additive genetical
effects for different population parameter values.

Finally, for each replicate of 500 pairs of MZ and 500 pairs of DZ twins,
mean-squares were calculated and two and three parameter models were
fitted to the data. The E1E2 model failed in all but one of the 200 replicates



E
1D

 
E

ID
R

H
R

 
- 

m
od

el
 

m
od

el
 

<
 

fa
ils

 
lR

I>
16

5 
12

 
20

+
 

2 
7+

 
5 

7+
 

C
; 

12
+

 
k5

—
 

t'i
 

4 
2 

3+
 

v.
 

7 
18

 
22

—
 

11
+

 
0 

2 
2—

 
'<

 
3 

20
 

25
—

 

I-
 

C
l) 

'F
A

B
LE

 

T
he

 r
es

ul
ts

 o
f s

im
ul

at
io

n 
of

 2
5 

re
pl

ic
at

es
 o

f s
am

pl
es

 
of

 50
0 

M
Z

 a
nd

 5
00

 D
Z

 tw
in

 p
ai

rs
 o

f t
hr

ee
 te

st
s f

or
 d

om
in

an
ce

: s
ke

w
ne

ss
, 

D
Z

 m
ea

n-
va

ri
an

ce
 

re
gr

es
si

on
 a

nd
 m

od
el

 fi
tti

ng
. 

Se
e 

te
xt

 fo
r e

xp
la

na
tio

n 

M
Z

 

h 
h/

d 
E

ilV
E

 
6(

g1
) 

,1
 

S
g 

(g
1)

 
e(

g1
) 

(b
) 

09
 

1-
0 

10
 

—
03

1 
—

0-
28

 
0-

08
 

17
 

0•
81

 
2 

0-
5 

—
0-

31
 

—
0-

32
 

00
9 

22
 

0-
81

 
2 

0-
5 

1-
0 

—
02

4 
—

0-
27

 
00

8 
18

 
0-

59
 

1 

0-
5 

—
02

4 
—

0-
24

 
0•

09
 

15
 

0•
59

 
1 

D
Z

 

i 
Si

, 
fl

(i
) 

e(
fl

g1
) 

(b
) 

—
03

1 
0-

07
 

24
 

0-
97

 
21

 
—

0-
30

 
0-

06
 

25
 

09
7 

21
 

—
0•

24
 

0-
08

 
21

 
0•

85
 

14
 

—
0-

22
 

00
8 

20
 

08
5 

13
 

0.
5 

1-
0 

1-
0 

—
0-

13
 

—
0-

13
 

0-
12

 
6 

0-
21

 
4 

—
0-

14
 

0-
07

 
12

 
03

6 
0-

5 
—

0-
13

 
—

0•
13

 
0-

09
 

6 
0-

21
 

1 
—

0-
13

 
0-

07
 

8 
0•

36
 

0-
5 

1.
0 

—
01

0 
—

0•
12

 
0-

08
 

3 
01

5 
1 

—
0-

09
 

0•
05

 
3 

0-
24

 

0-
5 

—
0-

10
 

—
00

7 
0-

08
 

1 
0-

15
 

2 
—

0-
09

 
0-

09
 

4 
0-

24
 



POWER OF THE TWIN STUDY 113

listed in table 6. However, for each combination, the number of replicates
out of 25 in which the E1DR model failed is given. The three parameter
models nearly always fit since the total variances of MZ and DZ twins are
equal within sampling error. For the E1DRHR model, the number of cases
in which j > 1 65 SHR is shown, divided into significant positive estimates
of HR and significant negative estimates which indicate the presence of
E2>HR.

It can be seen that no amount of genetical non-additivity causing distri-
butional skewness produces mean-variance regressions in MZ twins at
above the level of chance—almost exactly 5 per cent of the regression tests
in MZ twins are significant at the 5 per cent level. The sampling skewness
coefficients agree very well with the predicted values, and will be detected
with greater efficiency if in DZ twins we regard the sampling size as nearer
twice the number of pairs than in MZ twins where this assumption is less
justified.

For the case of high heritability and complete dominance the power of
the test for skewness and the regression test in DZ twins is very high. Where
there is no E2 the model fitting approach also finds significant positive HR
with great efficiency. However, as soon as there is even a small amount of
E2 (here only 5 per cent of the total variance) the detection of HR drops
markedly. This is because, as we have already mentioned, in the E1DRHR
model

fIR = HR—8E2.

Thus if there is any E2 present there is considerable advantage to be gained
in detecting directional dominance by using the skewness and regression
tests, provided there is no G x E2 interaction. We predict from theory and
it can be seen in the simulations that the skewness and regression tests are
unaffected by the proportions of E1 and P22 which comprise the environ-
mental variance VE.

When the heritability is high and dominance is intermediate the power
of the skewness test is about 80 per cent, of the DZ regression test about
60 per cent and of the detection of Hft by model fitting when no P22 is present,
about 30 per cent. For intermediate heritability, even when there is com-
plete dominance there is some hope of detecting significant skewness but
the power of all the other tests is little above chance level. However, we
must emphasise again that, unlike the regression test, the power of the
skewness test is dependent on the number of loci and will fall off as the
number of loci increases.

We may examine a little more closely the power of the model fitting
approach to detect dominance. In table 7 are listed the " true" values
of each of the eight combinations of parameters we have simulated. The
expected non-centrality parameters (calculated as shown above) for each
combination based on sample size of 1000 pairs (50 per cent MZ) are given
with the observed percentage powers (from the 25 replicates listed in table 6).
It was found that, making allowance for the small number of replicates,
the observed and expected powers correspond quite well.

Having calculated the non-centrality parameter we can obtain the sample
sizes required to reject the E1VA model at the 5 per cent level in 95 per cent
of experiments and these too are listed in table 7. Even for the most extreme
case of 90 per cent broad heritability, complete dominance and no we

40/I—H
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TABLE 7

Observed and expected power for rejection of E1VA model in selected cases. Required sample size for
95 per cent rejection and contributions of population parameters to estimates are also given

h h/d EIJVE E1 E, V V A(0.05 Obs. %
09 10 10 225 0 135 67•5 4•6 48 3330

05 1125 11•25 135 675 2'2 8 7013
05 10 225 0 180 225 05 20 29077

0.5 1125 1125 180 225 00 12
05 1•0 10 1125 0 75 375 0•9 8 16977

05 56•25 5625 75 375 60 72 2581
05 10 112•5 0 100 125 01 8 151600

05 56•25 5625 100 125 101 80 1525

* VA = l-DR, VD 1R.

shall need 3330 pairs (half MZ and half DZ) to reject the E1VA model in
95 per cent of cases, and this rises to nearly 30,000 pairs with intermediate
dominance. Eaves (1972) was able to show that, using optimal proportions
of either of his " minimal data sets ", all four parameters E1, P22, DR, HR
can be detected at the 5 per cent level of significance with 95 per cent
certainty employing total sample sizes which are smaller than those required
with the classical twin design to merely reject the E1DR model, underlining
the inefficiency of the twin study for this purpose.

The presence of P22 complicates the situation. When h =090,
hfd = 10 and E1JVE = 05 we see that VD = 675 is approximately equal
to 8E2 = 8xll25 = 92so fRRj = HR—8E2 is smaller than HR and the
E2VA model becomes more difficult to reject. In other cases, however,

I >HR and the E1VA model becomes easier to reject although the
fiR's will be mainly negative reflecting the presence of E2. In the eight cases
simulated it was found that E1 was largely unconfounded with the other
sources of variation whereas VA contained any P22 and VD variation which
was present.

In the case of h =09, h1/c11 = 05 and E1/VE = 05, there is a singularity
since VA = VA + VD + E2 and this leads to a perfect fit of the P21 VA model.

In conclusion it seems that in the absence of G x P2 the regression of
variance on mean for DZ pairs has a reasonable chance of detecting genetical
non-additivity against a background of high heritability. However, against
a background of intermediate heritability, even high levels of dominance
have little chance of detection. Thus, for the sample size on which these
calculations are based, which is not unrealistic there would be some point
in looking at DZ mean-variance regressions in a trait like IQ thought to
have high broad heritability and a reasonable degree of dominance (Eaves,
1973, 1975). However, there would be little chance. of success with traits
like personality which usually exhibit intermediate heritability and in which
there is no evidence for dominance variation (Eaves and Eysenck, 1975;
1976; 1977; Martin and Eysenck, 1976).

(iii) Unequal allele frequencies

A net inequality in allele frequencies predominantly in either the
increasing or decreasing direction will produce skewness in the phenotypic
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distribution but, once again this will tend to disappear as k increases.
However, for a single locus, with no G x E and no dominance the covariance
of DZ mean and variance will be

—4uvd,(u—v)

(where u is the frequency of the increasing allele and u + v = I) and the
DZ mean variance regression coefficient will be independent of k. Just as
dominance in the increasing direction produces a negative regression, the
increasing allele being more frequent will also produce a negative mean-
variance regression.

Table 8 shows the results of simulation of samples of twins from popu-
lations with only additive and specific environmental variance but with
differing gene frequencies and heritabilities. In a population with high
heritability, a moderate difference (0.7 to 0.3) in frequencies of increasing
and decreasing alleles will be detected by the test for skewness in about
50 per cent of cases and by a linear mean-variance regression in DZ twins
in about 25 per cent of samples of this size. The same is true for extreme
differences in gene frequencies in a population with intermediate herit-
ability. In the less likely case of high heritability and extremely unequal
gene frequencies, samples of this size will detect the effect with near complete
certainty.

TABLE 8

The results of simulation of 25 replicates of samples of 500 MZ and 500 DZ twin pairs from a population with no
dominance or E, but unequal gene frequencies. See text for explanation

MZ DZ
—

u e(g1) S (1) e(gj) (b) , S () e(g1) fl(b)
09 0'5 0O0 0.00 010 0 0•00 0 000 009 0 000

07 —0•17 —023 0'13 15 034 0 —018 0•09 15 057 7
09 —0•51 —048 0'06 25 100 1 —049 0•07 25 1•00 25

05 05 000 —0•01 0-10 0 0-00 0 —0-01 0-06 0 0-00 2
0-7 —0-07 —009 009 2 008 3 —005 007 2 0•14
0-9 —02l —021 007 12 0-48 0 —0-2! 008 17 0•75 6

As we predicted, unequal gene frequencies have no effect on the mean-
variance regression in MZ twins although their phenotypic distribution is
skewed.

Further simulation studies would determine the power of the classical
twin study to detect more complex combinations of unequal gene frequencies
and directional dominance.
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