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SUMMARY

A model combining features of Griffing's diallel cross analysis with regression
analysis for genotype-environment interactions is introduced using carp data
of Moav et al. (1975) as an example. An analysis of variance based on this
model provides information on the combining abilities of genetic effects and
the interactions of these effects with environments from which inferences can
readily be made on heterosis and heterosis-environment interactions.

Applying the empirical grouping method of Lin and Thompson (1975) to
these data (ignoring their diallel cross structure) established groups which were
remarkably consistent with their members' crossing backgrounds.

1. INTRODUCTION

REGRESSION techniques for studying genotype-environment (GE) interactions
are among the most widely used methods for investigating the response
patterns of genotypes. Typically, the linear regression of the data on
environmental indices is obtained for each genotype (the indices are usually
defined as the differences between the environmental means and the grand
mean). The regression slopes and intercepts, the latter simply the genotype
means, are considered to be characteristics of the genotypes.

Several recent publications have used this approach on data from diallel
cross experiments. These studies generally treated the intercept and slope
obtained from the regression analysis as a starting point and then proceeded
with a genetic analysis treating the two estimates as if they were independent
observations. For example, Hinkelmann (1974) suggested an analysis in
which the sum of squares for heterogeneity of slopes was partitioned into
general and specific combining ability (g.c.a. and s.c.a.) components to
investigate whether heterogeneity of slope can be attributed to "interactions
between environments and additive or non-additive gene action ", Moav,
Hulata, and Wohlfarth (1975) regarded each slope as being the sum of two
components (one proportional to the corresponding intercept and the other
equal to the remainder) which they obtained by regressing the slopes on the
intercepts; the two components of the slopes, and the intercepts, were then
analysed separately using potence ratios to investigate the heterosis of cross-
breds. Connolly and Jinks (1975) partitioned the slope into the same two
components, but used the approach of Jinks (1954) and Hayman (1954) to
the diallel cross to interpret them.

In view of these studies, it seems desirable to develop a single model
which specifically relates the regression parameters of the GE interaction
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to the appropriate genetic parameters so that the genetic components and
their interactions with environment can be examined simultaneously. One
such model based on the concept of additivity and dominance was proposed
by Perkins (1970), as an extension of Perkins and Jinks (1968). Here we
present another model of this type based on Griffing's (1956) combining
ability approach, and illustrate its practical value using the carp weight gain
data of Moav et al. The relationship between this model and other models
pertaining to GE interaction are discussed.

Lin and Thompson (1975), working in a more general context, have
shown how the genotype-environment interactions can be used empirically
to group genotypes with similar response patterns. Since this diallel cross
data of Moav et al. provide a useful example of GE interactions with known
genotypic background, the method of Lin-Thompson has been applied to
these data to determine if the resulting groups conform with this background.

2. DATA AND ANALYSES

Data given by Moav et al. (1975) for the adjusted weight gain of common
carp (Cyprinus carpio L.) were used in the present study. Twelve genotypes,
including four parental lines—a Chinese strain, Big-Belly (BB), and the
European strains, Nalice (Nas), Gold (G) and Dor 70 (Dor), six F1 crossbreds

TABLE 1

Weight gain data of 12 genotypes grown under floe environments (in grams, adjusted for initial weight) from Moav et al.
(1975). The final two columns are estimates of individual regressions on the environmental indices

Genotype Environment RegressionC
if- Density 1 Density 2 Density 3 Density 4 Intercept

Cross identification at Dor Yehiam at Dor at Dor at Dor (mean) Slope
BB 11 264 283 297 367 468 3358 04773
BBxNas 12 378 395 454 505 725 4914 08030
BBxG 13 321 405 401 495 726 4696 08855
BBxDor 14 383 386 457 535 740 5002 08490
Nas 22 279 292 352 479 795 4394 12285
NasxG 23 397 397 520 590 891 5590 11639
NasxDor 24 399 403 477 594 918 5582 12406
G 33 301 317 391 478 726 4426 09962
GxDor 34 353 388 472 587 780 5160 09858
Dor 44 394 403 517 593 874 5562 11238
V 356 416 456 589 877 5388 11910
L(GxBlue-Grey) 360 397 444 551 816 5136 10555

Environmental
indices (Ilk) —14465 —11990 — 5690 3685 28460

of these lines, and two commercial crossbreds V and L—were reared under
five environmental conditions: two locations, Dor and Yehiam, with four
population densities at Dor. The genotype-environment means are pre-
sented in table 1. The environmental indices (Ok) were obtained by sub-
tracting the overall mean from each environmental mean. These values
will be regarded as constant and assumed to represent environments in both
Analyses I and II. In Analysis I, this is a slight departure from common
practice where indices are usually based on the genotypes included in the
analysis. However, in order to simplify the presentation of results and to
facilitate comparison of the results with those of Moav et al., a single set of °k
has been used throughout. Analysis I was, in fact, repeated using indices
based on the 10 relevant genotypes, but the results differed little from those
presented here.



GENOTYPE-ENVIRONMENT INTERACTION 311

(i) Analysis I. Joint combining ability and regression analysis

The 10 genotypes of Moav et al. which comprised a diallel cross (i.e.
excluding V and L) were investigated in Analysis I. Let Y be the weight
gain of the zjth genotype (the progeny of the cross between the ith and the
jth parental lines) at the /cth environment. If the GE interaction can be
expressed as a linear function of the environmental indices, the two-way
classification model can be written as follows:

YJk = L+.CjJ+Ck+J3jjOk+Ljjk (Model 1)

where ot are the genetic effects, ek are the environmental effects, /3 are the
coefficients of regression of (1Jk — — .k + V...) on 0k and AJk are
deviations.

If genetic effects are written in terms of g.c.a. and s.c.a., i.e.

= g1+g5+s1,

where g1 and 5j5 represent g.c.a. and s.c.a. respectively; and if the interaction
between these components and environment can be expressed as a linear
function of 0k' Model 1 can be written as follows:

ijk = /1+g + g + + k + [/3(g)j + Ii(g)j + /3 (s)ij]°k + AJk (Model 2)

where are the regression coefficients of g1 and s on 0k respectively.
To be consistent with Griffing's Method 2* (1956), the following restrictions
are imposed:

g= P(g)i lk=0,
and

S+ = 0, P(s)ii+ f3()jJ = 0,

where
= = 13(s)ji

The analysis of variance of the carp data, assuming Model 2, is shown
in table 2. Although the same mean squares would be obtained by Hinkel-
mann's approach, his specification of the model differs from Model 2, a
point which will be discussed later. The estimates of g and s at each
environment and their coefficients of regression on are shown in table 3.
Both the g.c.a. and s.c.a. mean squares are highly significant (P<001)
when tested against the pooled residual mean square (3454 with 27 d.f.).
Most of the g1 x E interaction is accounted for by heterogeneity of the slopes
of g. On the other hand, since the mean square for differences among
P(s)ij (viz. 693.4) is not significant, the null hypothesis /3i = 0, for all
i and j, is not unreasonable. It is worth noting that the pooled residual
mean square is about the same magnitude as the mean square for the
replication-genotype interaction pooled over environments at Dor as reported
in the original paper (1563/4 = 390.8).

* Although Analysis I was based on Griffing's Method 2, Model 2 can clearly be used
with any of Griffing's other three methods.

38/3—c
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TABLE 2

AJ'TO VA for Model 2 of text

Source d.f. MS

Environment (E) 4 2875588
Genotypes (G) 9

g.c.a. (g) 3 43749-5
s.c.a. (s5) 6 14356-7

GxE 36
gxE 12 (4901.4)

Slopes of g 3 18535-9
Residual 9 35&6
xE 24 (428.2)
Slopes of sOJ 6 6934
Residual 18 339-9

Total 49

TABLE 3

Estimates of combining abilities (gi, sjj) and heterosis (Hs) at each environment and their coefficients of
regression on the environmental indices

Density 1 Density 2 Density 3 Density 4 Regression
at Dor Yehiam at Dor at Dor at Dor Mean coefficients

—208 —138 —438 57l —1158 502 —02308
g2 —04 —9-3 —23 5.9 50-4 8-9 01313
g3 —10-3 —18 1-0 2-8 46 —0-7 00252
g4 314 248 45-2 484 608 421 00744
s —414 —56-4 —49-1 —41-1 —648 —50-6 —0-0365
12 52-3 51-1 66-4 339 26-0 459 —0-0728

5-1 536 100 27-0 72-9 33•7 0-1158
254 81 21-9 21-4 30-7 21-5 00300

22 —67-1 —564 —77-1 —55-1 —701 —652 —00094
608 41-I 87-5 59-0 71-7 64-0 00321
211 20-6 04 17-4 425 204 0-0596

533 —254 —40-4 —44-8 —49-8 —47-5 —42-8 —0-0294
—15-1 —1-9 —8-0 13-5 —49-6 —12-2 —00891

544 —15-7 —134 —7-1 —26-1 — 11-8 — 14-8 —0-0003
H52 106-5 1075 129-5 82-0 93-5 103-8 —0-0499
H13 385 1050 570 72-5 1290 80-4 0-1488
H54 54-0 43-0 50-0 550 69-0 542 00484
H23 107-0 92-5 1485 1115 130-5 118-0 0-0515
H54 62-5 55-5 42-5 580 83-5 604 0•0644
H34 50 28-0 18-0 515 —20-0 16-6 —00742

— 144-6 — 119-9 — 56-9 368 284-6 0

(ii) Analysis II. Phenotypic grouping of genotypes based on
Lin- Thompson's method

All 12 genotypes were included in this analysis. The intercepts and
slopes of the regression of ijk Ofl O for each genotype are shown in table I;
the dendrogram of the cluster analysis is given in fig. 1. Six groups were
formed when the clustering was stopped after the dissimilarity index exceeded
the critical (5 per cent) F-value (table 4). This grouping, established by
numerical means, seems genetically very reasonable: the four parental lines
all belong to different groups; three crossbreds between Chinese and
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Fio. 1.—Dendrogram of clustering process for 12 genotypes, based on the Lin-Thompson
method.

European strains are in one group; and European crossbreds fall into two
groups. Within each of groups 2, 3, and 4, almost all of the members are
haif-sibs.

TABLE 4

Intercepts and slopes for the six groups of 12 genotypes

Group Genotype
1 BB
2 Nas x G, Nas x Dor, Dor, V
3 G x Dor, L (G x Blue-Grey)
4 BB x Nas, BB x G, BB x Dor
5 Nas6 G

Genotype Group 0 0 20 30 40 50 60 70 80 90 100
I I I I I I I

stopping point

Intercept
3358
5531
5148
4871
439.4
4426

Slope
04773
l 1798
1 •0207
O8458
l•2285
09965

3. Discussion

(i) Examination of heterosis and heterosis by environment interactions

When the use of Model 2 is justified, the approach followed in Analysis I
can assist considerably in the interpretation of the various genetic relation-
ships suggested by the data. Consider, for example, the question of heterosis.

If we define the heterosis Hk resulting from crossing the ith and the jth
parental line at the Jcth environment as the expectation of

V 1IV LVijk 3 -ukT jfk
then under Model 2 (indicating estimates by "), H may be estimated as

or
fiifk = si.j — + s) + — + I3(s)fJ)]O5

=j.+ Ji(7j)jfOj
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where
=

and
I3(H)ij = ft (s)IJ — + I3 (s)jj)•

These relationships indicate that if heterosis is a linear function of °k'
the estimated intercept is a linear combination of.15 and the estimated slope
is a linear combination of f3>.

Although the concepts and calculations presented by Perkins (1970) for
the diallel cross differ considerably from those presented here, it is.interesting
to note that H5. is identical to Perkins' estimate of dominance, and if the
same environmental indices are useçl in both methods, ft is identical to
Perkins' estimate of the linear coefficient of dominance. These points are
discussed below.

An interesting feature of Analysis I was that g differed significantly
among environments but did not; i.e. the Th8)ij appeared to be zero under
this range of environmental conditions (table 3). Hence, it is apparent
from the expression for 1115k above that there was no heterosis by environ-
ment interaction. This implies that from the point of view of adaptation,
only the g.c.a. was important, or alternatively, that heterosis remained
constant over environments.

Again, since the I3813 were not significantly different from zero, an
appropriate model for I3 of Model 1 is I3 = + fi which implies
that f3 = + f), since = 2fi if fi (8)11

= 0. This relationship
explains why Moav et al. found the response slopes of crossbreds to be
generally intermediate between those of their parents.

(ii) Comparison with Il/bay's et al. potence ratio analyses

Moav et al. used a potence ratio to compare the weight gains of six
crossbreds at six environmental points: three actual points and three
hypothetical points (Moav et al., p. 334). The ratio at the kth environment
is defined as Disk/A 15k, where DIsk is equivalent to the present Hisk and Ajik
is defined as one-half of the difference between parents. They observed
that the mean ratio of all six crosses became smaller as the environments
improved, and that in general this held true for each individual cross.

This trend can be interpreted in terms of Model 2 as follows. Since
it has already been shown that HIsk (and ) do not appear to change
with respect to environments, any change in the potence ratio is due to Alik
which can be written,

'4ijk = i'i—j + + [ftgj /3(g)j + Mfl(s)ji—fl()JJ)]Ok.

A change in AIsk due to environment is merely a change in (ft — ft ()J) O,
because (fJ(8)11—fl(8)55) is approximately zero. It can be observed from
table 3 that differences among increased as °k improved, particularly
when one parent was BB.

Moav et al. also investigated the potence ratios of the two components
of slope mentioned in the first section (the slope, Ii+ 1 of Model 1, assuming

= 6k is redefined to be equal to 1 + M215 + N15 where M is estimated by
the least squares regression of /3 on and N15 is the remainder). They
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observed that for six crossbreds the potence ratios of the scale function
(1 + M&5) were all positive, while the potence ratios of the specific respon-
siveness (N) were all negative. The mean potence ratios were l3O and
— ll2 respectively. From these results, they concluded that both com-
ponents expressed heterosis of about the same magnitude but in opposite
directions giving rise to " additivity of slopes ", that is, the absence of
heterosis-environment interactions. Thus Moav et al. assume two genetic
systems working independently, one controlling the intercept and part of
the slope (scale function) and the other controlling the rest of the slope
(specific responsiveness), while the present interpretation assumes that one
genetic system (g.c.a. and s.c.a.) controls both cc and j3. From Moav's
et al. point of view the additivity of slope arises from the balance of two
systems, whereas under the present considerations, additivity is due to non-
responsiveness of s.c.a. It is difficult to determine which of these two
interpretations is more in accord with genetic reality. However, it should
be noted that the present approach seems easier to comprehend as it is
more consistent with the concept of combining ability proposed by earlier
workers.

(iii) Comparison with IVIoav's et al. class fjication

In a brief comment, Moav et al. suggested four classes for the 12 geno-
types, based on the average performance. They included groups 5 and 6
of table 4 in one class and groups 2 and 3 in another class. From fig. 1, it
can be seen that groups 5 and 6 are relatively similar, but groups 2 and 3
are considerably different. For comparison ANOVAs based on the four
groups of Moav et al. and the six groups of fig. 1 are presented in table 5.
The analyses show that there were still large proportions of variation in

TABLE 5

ANO VAs based on the two groupings of the genotypes. A refers to the grouping obtained in the text.
B refers to the grouping obtained by Moav et al

A B
- (_

Source d.f. MS d.f. MS

Environments (E) 4 3626770 4 3626770
Groups (Gr) 5 456032 3 727455
Genotype (a)/Gr 6 6451 8 170&3
GrxE 20 12

slopexGr 5 127412 3 187877
dev.xGr 15 2010 9 1659

EXE 24 32
slope X ce/Gr 6 2629 8 11150
dcv. x EJGr 18 414'O 24 3739

"genotype within groups" and in "slope x within groups" for Moav's
et al. classification, indicating that the average performance and slopes
within certain groups are not really the same. It may be observed from
table 4 that groups 5 and 6 have similar intercepts but they differ in slope,
while groups 2 and 3 have similar slopes but they differ in intercept. It
should be noted that the relatively clear-cut classification pattern of Analysis
II could be, in part, a result of the small heterosis by environment interaction.



316 C. S. LIN, M. R. BINNS AND B. K. THOMPSON

(iv) The interrelationships between IViodel 2 and other regression models
for GE interactions

When a diallel cross design is used in a GE experiment, the data can be
analysed using a model such as Model 2 which incorporates genetic and
regression models, or they can be analysed using a regression model such
as Model 1, which ignores the information provided by the genetic structure
of the experiment. In a more general context Model 1 can be expressed
as a simple regression of jjk on 0k; i.e.

jk = aJ+bJOk+LJk (Model 3)

The algebraic relationships among the estimates of the corresponding
parameters in each model are summarised below:

(i) The estimates under Model I can be expressed in terms of the
estimates of Model 3 as

fi = b— (Y..k— Y..)OkI1 O = b1—b
k k

= au—a..

where b and ul are the means of all estimates of b11 and ajj
respectively. — —

When 0k = — = , the above equations become

fl = uj—1

uj =

Thus, for example, in Analysis I (0k k)
= 04773—09754= —O4981

(ii) The j3 of Model 1 and /3( and /3(s)ij of Model 2 are related as
follows

= fl(g)u+I3(g)j+P(s)uj

e.g. from table 3.

2fi(g)l +$(1 = 2(—O23O8)—OO365 = —04981

which is fi of Analysis 1.

(iii) The estimates of fl fi and their sums of squares (SS) given
in tables 2 and 3 can be obtained directly by regressing gk, 5ijk on
°k' where g and Slik represent the g.c.a. and s.c.a. respectively at
the kth environment as shown in the left column of table 6. How-
ever, they can also be expressed in terms of fi of Model 1, or in
terms of b1 of Model 3 as shown in the right column of table 6.

When b,j are analysed by Griffing's combining ability analysis, the
estimates of g.c.a. and s.c.a. for b5 are equivalent to and fit; and
the sums of squares for g.c.a. and s.c.a. of multiplied by the constant
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TABLE 6

Formulae for fl(g)j and fl(s)ij and their sums of squares (p is the number of inbred lines used in the
diallel cross)

In terms of gik and sJk In terms of b1

1k0k/ o = g.c.a.

fl(s)if O -—(j + &t+ +b)
k k p+2j

+ 2

(p+l)(p+2) ij

SS (slopes of g) (p+2) ( ik0k)I0k )2 —i k j p k

= (SS of g.c.a. of bj)

SS (slopes of s) ( Sf0)/ O (.._ j;)2 O— SS (slope of g)ij k k

= (SS of s.c.a. of )

value L'O,, are equivalent to the sums of squares for "slope of g1" and for
slope of s" respectively in table 2. Furthermore, the sum of these two

sums of squares is

(b—b)2if k

which is the sum of squares for heterogeneity of slope under Model I and
Model 3. Thus, when data from a diallel cross are analysed according to
Model 3 or Model 1, the sum of squares for heterogeneity of slope can be
partitioned into g.c.a. and s.c.a. components as suggested by Hinkelmann.
Algebraically, as stated earlier, the present analysis and Hinkelmann's
analysis yield the same results. The difference is that by relating regression
parameters to the parameters of combining ability model, Model 2 allows a
direct biological interpretation.

In contrast to the above three models which are generally described in
terms of phenotypic parameters, the model of Perkins is directly related to
the underlying gene action, in particular, to additive and dominance effects.
However, the application of Perkins' (1970) model requires the satisfaction
of certain restrictive assumptions concerning the genetic background of the
material (e.g. the parental lines, unlike Moav's, must be pure-breeding).
In situations where the assumptions can be justified and the researcher is
interested in investigating the nature of the underlying gene action and its
interaction with the environment, Perkins' analysis may be more informative.
It is interesting to note that where Perkins' model is appropriate the para-
meter estimates are algebraically related to those of Model 2. In the
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particular form presented by Perkins, the following relationships hold (using
Perkins' notation to the left of the equality sign):

additive: d, =2+—
dominance: h(J) = — -CU + ) =H.

and if 0k = r, (where ej are the environmental indices used by Perkins
and are based on parental lines only)

additive x Env.: / =2j+ [1()jj —

dominance x Env.: J3h(jj) = fl(s)iJ 3(fl(s)It + I3()JJ)

= I3(H)ij

4. Coiwiusio
The main advantage of using Model 2 for studying GE interactions in a

diallel cross experiment is that both the combining abilities of genetic effects
and the linear function of combining ability components by environment
interaction can be studied simultaneously. Since the parameters representing
the regression model are directly related to the corresponding parameters
representing the combining abilities analysis, the model provides a direct and
easy biological interpretation. Furthermore, from the results, both heterosi
and heterosis by environment interactions can be easily assessed by examining
linear combinations of s and /3 respectively.

It has been shown that the regression coefficients of g.c.a. and s.c.a.
components on environmental indices are algebraically equivalent to the
g.c.a. and the s.c.a. of (Model 3) or fl (Model 1). Thus, it can be said
that Model 2 provides both a structural as well as a biological base for what
may be termed[ a joint combining ability analyses for both intercept and
slope.

The close agreement between groups obtained numerically using Lin-
Thompson's method and the parental association of genotypes reflects the
importance of GE interactions as classification criteria in biological studies.
This example suggests that the grouping method is a useful tool not oniy
in simplifying the interpretation of complicated interactions but also in
identifying underlying biological relationships among genotypes irs the
resulting groups.
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