Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-way pattern analysis of a large data set to evaluate genotypic adaptation

Summary

A method for the analysis of genotype × environment interaction in large data sets is presented and applied to yield data for 49 wheat cultivars grown in each of 63 international environments. Pattern analysis using numerical classification defined separately groups of cultivars and groups of environments, based on similarities in yield performance. The group structure for cultivars was interpreted in terms of similarities and differences in cultivar mean yield and/or cultivar yield response patterns across environments. In addition, the cultivar groups reflected differences in genetical and selectional origin. Environment groups largely reflected differences in the average mean yield of the set of cultivars, but some groups showed differences in response patterns related to differential rust incidence.

The cultivar and environment groupings were superimposed on the original data matrix, reducing it to a 100 cell 10×10 matrix of group means. The efficiency of the reduction process was measured by comparing the variation retained in the reduced matrix with the total variation available in the original data matrix. Further study of the information retained by the 10×10 matrix was made by plotting cultivar group yields and cultivar group interaction effects against an environment group index. The reduction process achieved a size reduction of 97 per cent with the loss of only 18 per cent of the total variation available in the original unreduced matrix. Partitioning was used to identify the nature of this loss. However, the information retained in the reduced matrix maintained the integrity of the cultivar group yield response patterns and allowed comparison of cultivars on a group basis across the environmental range. This reduced greatly the complexity of analysis of cultivar performance and interaction patterns, and simplified the identification and specification of differences in response among cultivars.

References

  • Abou-El-Fittouh, H A, Rawlings, J O, and Miller, P A. 1969. Classification of environments to control genotype by environment interactions with an application to cotton. Crop Sci, 9 135–140.

    Google Scholar 

  • Burr, E J. 1968. Cluster sorting with mixed character types. I. Standardization of character values. Aust Comput J, 1 97–99.

    Google Scholar 

  • Burr, E J. 1970. Cluster sorting with mixed character types. II. Fusion strategies. Aust Comput J, 2, 98–103.

    Google Scholar 

  • Chuang-Sheng, Lin, and Thompson, B. 1975. An empirical method of grouping genotypes based on a linear function of the genotype-environment interaction. Heredity, 34 255–263.

    Article  Google Scholar 

  • Finlay, K W, and Wilkinson, G N. 1963. The analysis of adaptation in a plant breeding programme. Aust J agric Res, 14 742–754.

    Article  Google Scholar 

  • Freeman, G H, and Dowker, B D. 1973. The analysis of variation between and within genotypes and environments. Heredity, 30 97–109.

    Article  Google Scholar 

  • Freeman, G H, and Perkins, J M. 1971. Environmental and genotype-environmental components of variability. VIII. Relations between genotypes grown in different environments and measures of these environments. Heredity, 27, 15–23.

    Article  Google Scholar 

  • Goodchild, N A, and Boyd, W J R. 1975. Regional and temporal variations in wheat yield in Western Australia and their implications in plant breeding. Aust J agric Res, 26 209–217.

    Article  Google Scholar 

  • Horner, T W, and Frey, K J. 1957. Methods for determining natural areas for oat varietal recommendations. Agron J, 49 313–315.

    Article  Google Scholar 

  • Mackenzie, D R, Mexas, A G, Finlay, K W, and Borlaug, N E. 1971. Results of the Fourth International Spring Wheat Yield Nursery, 1967–1968. International Maize and Wheat Improvement Centre Research Bull No 18.

  • Mungomery, V E, Shorter, R, and Byth, D E. 1974. Genotype×environment interactions and environmental adaptation. I. Pattern analysis—application to soya bean populations. Aust J agric Res, 25 59–72.

    Article  Google Scholar 

  • Perkins, J M, and Jinks, J L. 1968b. Environmental and genotype-environmental components of variability. III. Multiple lines and crosses. Heredity, 23 339–356.

    Article  Google Scholar 

  • Perkins, J M, and Jinks, J L. 1968b. Environmental and genotype-environmental components of variability. IV. Non-linear interaction for multiple inbred lines. Heredity, 23 525–535.

    Article  Google Scholar 

  • Perkins, J M. 1972. The principal component analysis of genotype-environmental interactions and physical measures of the environment. Heredity, 29 51–70.

    Article  Google Scholar 

  • Suzuki, S. 1968. Studies on the evaluation of strain adaptability. Proc 12th int Congr Genet, 270.

  • Williams, W T, and Lambert, J M. 1961. Multivariate methods in plant ecology. III. Inverse association analysis. J Ecol, 49 717–729.

    Article  Google Scholar 

  • Williams, W T. 1967. The computer botanist. Aust J Sci, 29 266–271.

    Google Scholar 

  • Williams, W T. 1971. Principles of clustering. A Rev Ecol System. 2, 303–326.

    Article  Google Scholar 

  • Wishart, D. 1969. Mode analysis: a generalization of nearest neighbour which reduces chaining effects. In Numerical Taxonomy (ed. A. J. Cole). Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Byth, D., Eisemann, R. & de Lacy, I. Two-way pattern analysis of a large data set to evaluate genotypic adaptation. Heredity 37, 215–230 (1976). https://doi.org/10.1038/hdy.1976.84

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/hdy.1976.84

Further reading

Search

Quick links