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SUMMARY

A biometrical-genetical model for human variation adequately predicts
observed correlations for measured intelligence. The estimation procedure
is outlined.

IN a recent review Jinks and Eaves (1974) stressed the close agreement
between observed correlations between relatives for IQ and their expecta-
tions on the basis of a simple model. Their model involved five parameters:
additive and dominant components of gene action (DR and HR); the marital
correlation (a); the correlation (A) between spouses' additive genetical
deviations; the component (Er) reflecting the environmental covariation
of parent and offspring. The contribution of the environmental influences
specific to individuals (E1) is a sixth parameter whose magnitude is fixed
by the other five by the restraint that the total variance is unity.

Jencks' (1973) application of path coefficients to the analysis of intelli-
gence was partly questioned because of what was believed to be an upper
limit upon the value of the path between the genotypes of parent and off-
spring. No such limit exists in fact so his conclusions cannot be discounted
on this basis. More critical, however, was Jinks and Eaves' re-analysis of
published correlations (Burt, 1966; Jencks, 1973) which demonstrated that
any signficant heterogeneity of heritability estimates obtained from different
degrees of relationship can be removed if the contribution of dominance is
precisely specified and a weighted least squares procedure is adopted.

The correlations analysed have already been tabulated (Jinks and Eaves,
1974), but details of the model and estimation procedure were necessarily
omitted and are considered here. The model (table I) is that of Fisher (1918)
for the correlations between relatives for a population in equilibrium under
assortative mating with additions to specify the contribution of certain
plausible environmental components. The model is a modification of that
in the review because u has been reparameterised in terms of A and DR.
This restriction is necessarily imposed if all the assumptions in Fisher's model
are to be tested adequately. It will be seen that although the restraint alters
the estimates somewhat the fundamental interpretation remains unaltered.

In view of the fact that biometrical genetical models are usually linear
and this model is substantially non-linear it is appropriate to outline the
estimation procedure.

The model for our vector of observed correlations x may be written

x=f(4)-i-8
where f() represents a vector of functions of the parameters , and g is a
vector of deviations. We require to minimise the weighted sum of squared
deviations

x2 = ' W
=[x —f()]' W[x—f()] (1)
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Wis the matrix of information about the observed statistics. Since the x are
correlations, W is a function of f(4) which is unknown until has been
estimated. Trial values for the elements off() have thus to be found so that
an initial approximation to Wcan be computed. It is convenient to use our
observation vector x as our trial estimate off(). When 4 has been estimated
for a given estimate of W a closer approximation to W can be computed
(Mather and Jinks, 1971). If the observations, x, are independent, W is
diagonal. This will be assumed here, but it may be the case, for Burt's data
at least, that some individual observations have contributed to more than one
correlation. The ith diagonal element of W was set to (n —2)1(1 —f() )2.

TABLE 1

Expectations for correlations between relatives

Correlation with Expectation
/ 2A(1—A)\f 1 \

1. Parent living together (T) + DR )A) DR+EC

I 2A(1—A)\I 1
2. Parent living apart (A) + DR ) 'J—A) DR

/ 2A(l—A)\f 1 \fl+A\2
3. Grandparent l + DR ) i—--A) —-—) DR

4. Monozygotic twin T
2(1—A)

DR+HR+EC

5. Monozygotic twin A

6. Dizygotic twin T or ( 1 \ (1 +A\ 1

full sibling T \l—A/\2J DR+- HR+EC
/ 1 \Il+A\ 1

7. Full sibling A 1i=A) ——-) DR + HR

/ 1 \Il+A\' A
8. Uncle or aunt —fl-—-—) DR+ HR

/ 1 \Il+A\' A2
9. 1st cousin iA)) DR+6—4 HR

/ 1 \Il+A\s A°
10. 2nd cousin j—)——) D+ HR
11. Foster parent T E
12. Unrelated T E

2A(l—A)
13. Spouse DR

Recognising that we can write W = V' V we can recast (1) in the form:

=1 '1
in which f = VEx—f()]. If W is diagonal V = W4. We require to set
the gradient of x2 to zero, i.e.

= 2J= 0,

where J is the m x n matrix of the first partial derivatives of the m weighted
deviations, f, with respect to the n parameters, .
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Since the functions f are non-linear in we must adopt an iterative pro-
cedure to obtain estimates for a given set of weights. The Newton-Raphson
procedure (" Fisher's scoring method ") obtains a correction vector ö0 by
solving:

HOöO = —Jf0.
Improved estimates 4i are obtained as 4 + ö0. H0 is the n x n matrix of
second partial derivatives of x2 withrespect to 4. The procedure is repeated
until 5 is sufficiently small. Exact evaluation of H can be tedious so an
approximation of H may be used which forms the basis of the Gauss-Newton
method. For H we substitute

G=2J'J,
which is equivalent to assuming that the functions of linear or that f are
small. G may not be positive definite for trial values of and the process
may not converge. Marquardt modified the method by introducing a
parameter )> 0 and obtaining S as a solution of

(J'J+)J)S = —if.
For sufficiently large ) it has been shown that S will always lead to 4 which
reduce 1,1. A further modification of this method has been implemented by
the Nottingham Algorithms Group (1972) and the solutions reported here are
obtained by this procedure.

Estimates of the parameters, together with an approximation, (J' J) 1, to
their covariance matrix are given in table 2 for both sets of data. Inclusion

TABLE 2

Estimates of parameters and their covariance matrices

Covariance of estimate with

Parameter Estimate A
2A. Burt's data

33R 0•9417 0•01197 —0•01932 —0•00096 —000297
RR 0•8188 —001932 004558 0•00088 0•00244

00656 —0•00096 000088 000080 —0•00026
A' 0•2775 —0'00297 0•00244 —000026 0•00183

Residual x0 1350

2B. Jencks' data
DR 0•5628 000278 —000505 — •0•00104 000123
HR 1•3194 —000505 0•01281 000130 —O•00228
E0 0'2891 —0O0l04 000l30 000542 —000049
A 02007 0•00123 —000228 —000049 000065

Residual x 2 7.47

of the restraint leads to an increase in x2 in both cases and to some changes
in the parameters, but in neither case are the residuals significant and in
neither case is there any need to alter the earlier conclusions about the
magnitudes of the heritable and non-heritable components of variance, the
mating system, or the kinds of gene action and their possible evolutionary
basis.
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Jinks and Fulker (1970) assumed no environmental covariation of parent
and offspring in their analysis of some of Burt's correlations, fitting instead
of E a component, E2, which specified the environmental variation common
to members of a sibship reared together. The expectations are the same as
those in table 1 except that E2 is substituted for E and the environmental
component does not appear in the expectations for statistics 1 and 2.
Fitting this model to the correlations (table 3) leaves little grounds for choice
between models for Burt's data but reveals a much worse fit of the second
model to Jencks' correlations.

TABLE 3

Parameters of Jinks' and Fulker's model

Covariance of estimate with
-A-

Parameter Estimate
r

DR fiR E, A
3A. Burt's data

DR 0•9865 00l321 —002058 —000036 —000396
H 06229 —0•02058 0•05197 —0•00166 000405

00721 —000036 —000l66 000093 —000015
A 02889 —0•00396 000405 —0•00015 000193

Residual 1327

3B. Jencks' data

DR 08140 000072 —000ll6 —0•00026 —00O002
HR 07882 —000116 0•00901 —000068 —0000l9
E, 0l267 —0•00026 —000068 000064 —0'00028
A 03660 —0•00002 —0000l9 —000028 000033

Residual x, 12018

CONCLUSIONS

Successive improvements itt the procedure by which biometrical-
genetical models are fitted to correlations between relatives for IQ make
little substantive difference to earlier conclusions about the statistical
significance and biological importance of the various genetical and environ-
mental determinants of individual differences in measured intelligence.
The data may still be questioned, and other plausible models produced but
the model considered here provides a criterion of simplicity and quality of
fit which must be equalled by any alternative.
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