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SUMMARY

The conditions are discussed under which the regression (bD/S) over a range
of environments of the difference between two genotypes, X andY, on their sum
will be linear. It is shown that if the slope of this regression falls outside the
range — I to I, the two genotypes must be responding in opposite directions to
the changes in the environment. The relations of bD/s to byix and bx,y, the
regressions of X and Y on one another, are derived and the effects of error
variation are considered. The three regressions are derivable from one
another in principle, and the most useful values will be obtained by estimating
from the data the one which is least subject to distortion by error variation
and deriving the others from it. The best starting point will commonly, but
not always, be bnis.

The treatment is extended to the analysis of multi-line experiments, due
to Perkins and Jinks, in which each line is regressed on the mean of them all.
It is shown how estimates of such regressions, not open to the statistical
objections of regressing a variate onto another of which it itself is a part, can
be obtained by starting with the regression of each line on the mean of the rest.
The value of bnis for any pair of the constituent lines can be derived directly
from the multi-line analysis, and indeed once the analysis is available any
group of lines can be readily compared with any other such group.

1. INTRODUCTION

IT was observed by Yates and Cochran (1938) that the magnitude of the
genotype x environment interaction in the determination of the phenotypes
shown by a number of genetically different lines or varieties raised in a range
of different environments, could be related to the overall effects of the
environments. Their treatment was wholly statistical, but a similar relation
between the genotype x environment interaction was also observed with two
inbred lines of J"Ticotiana rustica and their F1 by Bucio Alanis (1966) and Bucio
Alanis and Hill (1966) whose analyses were carried out and results expressed
in terms of the parameters which biometrical genetics has taught us to use.
In particular they showed that with the two inbred lines the relationship
of the interaction, g (see Mather and Jones, 1958) to the overall effect of
the environment, e, could be found from the regression of the difference
between the mean phenotypes of two lines in any given environment on the
corresponding sum of these mean phenotypes. Furthermore they found
this regression to be linear. The departure of the mean phenotype of the
F1 from the midparent similarly showed a linear relation to the e. This
approach was generalised by Perkins and Jinks (1 968a, b) who considered
the case of more than two lines and showed that the interaction properties
of any line could be inferred from the regression of that line's phenotype
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on the mean of all the lines under observation. They also established,
however, that the regressions are commonly not linear, even in J'Iicotiana
rustica, the departures from linearity showing evidence of being themselves
related to the genotypes of the lines under investigation.

These findings raise many questions, some of which will require further
examination of the genetical aspects of these interactions with the environ-
ment. We will, however, confine ourselves here to looking into the general
conditions for linearity of the regression line and certain aspects of the
information that can be derived from the slopes of these lines.

2. THE TWO-LINE CASE

(i) Linearity
Let us consider two genotypic lines, X and Y, raised in a range of

environments which may differ in any number of factors such as temperature,
humidity, availability of nutrients, crowding of habitat and so on, all
prospectively affecting the phenotypes of X and Y. Let us further suppose
that these environmental factors may be measured by means independent
of the development of X and Y in them, and the measurements combined
into an overall metric characterising the environment that the factors combine
to produce. Then in the environment characterised by the value we
observe line X to express the character under consideration to the value
x1, and line Y to the value y. In environment z2 we similarly observe
x2 andy2, and so on. Then we can plot x andy against z, and assuming
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Fio. 1 .—The phenotypes, x andy, of two genetically different lines, X and Y, varying with
the environment as measured by an independent metric, z.
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the three to be continuous variates, we can obtain two lines representing
the phenotypes and the changes that X and Y show over this range of
environments (fig. 1).

Following Bucio Alanis and Hill, we measure the overall effect of the
environment, e, by x +y. The genotype x environment interaction, g, is
one of two components whose sum is measured by x —y. The second
component is d, the overall effect of the genotypic difference between X and
Y, but since this is by definition constant over environments we may neglect
it in considering, as we are concerned to do, the slope of the regression line.
Thus leaving error variation out of account for the present, the slope of
the regression of interaction on overall effect, that is of g on e, is the rate
of change of x —y on x +y.

Now

d(x—y) — d(x_y)/d(x+y) —

d(x+y)
—

dx / dx
—

dx)/ \ dx

The regression of g on e as measured in this way is independent of z and
hence of the way that the various environmental factors were combined
in producing the environment as measured by z. At the same time, if the

regression of x —y on x +y is to be simply linear, d(x —y) must be invariable
d(x+y)

with x andy. This in turn requires that does not vary with x. Further-

more since = - /, linear regression of g on e as measured in this way
dx dz/ dz

requires that x and y are related in a basically similar way to the various
environmental factors that jointly determine . Or to put it more precisely,
iff(x, z) andf(y, z) are the functions relating x andy to zf(y, z) = Icf(x, z)
where k is independent of x, y and z. k may be of any size or even negative
(which would imply that the two lines responded to change in the environ-
ment by change of phenotype in opposite directions); but it is independent

of the environment itself. We may note that k as so defined must be which

is the regression of the phenotype of line Y on that of line X.
Writing bD/s for the regression of x--y (= D, the difference) on x+y

(= S, the sum) and by1x for the regression of Y on X, we can rewrite the
relation as

bD/S (1—by1x)/(l+by,x)

and bD/s> I only if by, is negative.
Equally, using the same definition of bD/s, the regression of y —x on

y+x will be

—bD/S = (l—bxiy)/(l+bx,y) = (by,x—l)/(byix+l).
Where, as at present, we are neglecting error variation, b1y 1 /by1x

and the values of bD,s corresponding to equal values of by1x and b,y will
be equal in magnitude but opposite in sign.

The relations of bD,s to by1x and bx,y are shown graphically in fig. 2.
It will be observed that when bD/s lies between —1 and 1, byix and bx1y
are positive. Thus for — 1 <bD,s < 1 the two genotypes X and Y are
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FIG. 2.—The relations of by1x and bxiy with bjs in the two line case.

responding in the same direction to the change in the environment, though
at different rates where bD/s 0. When bD/s 0, by, = bx1y and the
two genotypes are responding at the same rate: in other words g = 0
and there is no interaction. Where bD/ s lies outside the range — 1 to + 1,
by1x and bxjy must be negative, and the genotypes X and Y are responding
in opposite directions to change in the environment.

These relations hold precisely only where bD,s, by1x and bx,y are, so to
speak, the ideal regression coefficients which would be obtained by the
normal process of estimation only in the absence of error variation. We
must now turn to examine the effects of error variation.

(ii) The multiplicity of regression estimates
We have been considering the properties of bD/s, by,x and bx1y all of

which can be estimated from the data, and any one of which, once known,
can be used to generate expectations for the others. All these estimates will,
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however, be affected by the error variation of the observations of the pheno-
types, x andy, displayed by the two genotypic lines (see Hardwick and Wood,
1972). We will assume that, as can be secured by adequate experimental
design, the error variations of x andy can be measured and are independent.

The estimates of by1 and will, of course, be found as by1x = W,, !V
and bxjy = WY, x/VY where x and y are taken as deviations from their
respective means. Assuming that the regressions are simply linear, and in
the absence of error variation, these two regression coefficients will be
reciprocals of each other; but error variation in x will raise the value of
V while leaving W, unaltered and so will reduce the value of by1x.
Similarly error variation in y will reduce the value of If x and y
are subject to equal error variation, the reduction will be proportionately
less in by1x where genotype X reacts more to change in the environment than
does genotype Y, and the reduction will similarly be less in b1y where Y
reacts more to environmental change than does X. Now if we derive bD/s
from by1x we find:

b = 1—b, = l—W,/V = = ______D/S l+by1 l+WY,x/Vx Vx+WY,x Wx(x+Y)

where a variance is regarded as the covariance with itself of the variate in
question (though we must remember that error variation inflates variances,
but not covariances in an adequately designed experiment).

Similarly starting with bx1y, we find

b = V— WY, X
D/S

VY+WY,,, WY(Y÷x)

Since for any given WY, , the greater the value of V the nearer the value
of (V — Wi,,) / ( V+ WY, ) will be to 1, the effect of error variation in x andy
on the estimate of bD/S, as derived from by,x or b1y, will be to reduce its
departure from 1, the reduction being greater where the error variation is
proportionately greater.

If, however, we estimate bD/ s directly from x —y and x +y we have:

b = W(x_Y) (x+Y) = —

D/S
V(±)

Clearly bDJS will be 0 where V and VY are equal. More particularly however,
since error variation in x andy will tend to cancel out in the numerator but
to reinforce in the denominator, its effect will be to reduce the estimate of
bj5, to bring it in fact nearer to 0 rather than towards 1, as is the effect of
such variation when bD/S is found from by,x or

Having estimated bD/S directly from x —y and x +y, we can of course
find from it:

b
1 —bD/s = 1— (W(x_Y)÷Y)/V(+Y))
1 +bD/S I + (W(x_y)+Y)/V(Z+Y))

V÷,) — W(x_Y) (x+Y)

V(+) + W(x_Y) (z+Y)

= Wy(x+Y)

Wx(x+Y)

and similarly b1y = WXX+Y

Wy(x+Y
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Although when given one of the three regression coefficients the
others can be derived from it, the estimates so obtained will evidently vary
according to the particular regression coefficient with which we start. Thus,
for example, starting with by,x = Wy,, fV, we can find b1y = V/W0, as
its reciprocal, and bD/S = W(,,_)/W(+0) as shown above. Starting with
biy, bD/sbecomes W0(_0)/ WY(X+Y)and iffound directly it is W(_0) (x+y)IV(+0).
The three sets of estimates, found when starting with the three regressions
are set out in table 1.

TABLE I

The interrelations of the three regression coefficients as derived from each other
(see in the text)

Structure of

Starting with byix bD/s

byjx Wy / V, V/ Wy, z Wx(_y)/ Wa-y)
bxiy V/Wy, W,/V0 Wy(x_y)/Wy(a+y)
bDJ s Wy(z+y)/ Wz(x÷y) Wx(x÷y)/ Wy(z+y) W(x_y)(x+y)/ V(x÷y)

The various estimates of each regression differ from one another in two
ways. First, they differ in the impact that error variation has on them.
Thus b1y found as the reciprocal of by1 will be inflated by error variation
in x just as by,x is itself reduced, while b,y found directly will be reduced
by error variation in y, just as by1x found as its reciprocal will be inflated.
Similarly brji s found directly will be reduced by error variation in x
but if found from by1 or bx, the reduction will be in its departure not
from 0 but from 1. When by,x and bx1y are found from bD/ s, one will be
inflated by error variation and the other reduced according to the relative
values of V and V0.

Secondly, if we regard a variance as the covariance of a variate with
itself (subject always, of course, to the differing effects of error variation on
covariances and variances), byix can be regarded as a weighted mean of
y!x using x as the weight, and bx1y and bD/s found from it are similar
weighted means of xy and (x—y)/(x+y) with x as the weight. When we
start with bx1y we obtain similarly weighted means with y as the weight,
and when we start with bD/s the weight is x+y. In the absence of error
variation the use of the various weights will make no difference, since with
a linear relation such as we are discussing between x andy, the two variates
will bear a constant relation to one another and weighting by x, y and x
will come to the same thing in the end. With error variation present,
however, the various weights will not be equivalent, as they will be differently
affected by the error variation. Often we might expect x -f-y to be subject
to proportionately less disturbance from the error variation, in which case
it is better to make bD/s the basis of the analysis, but, as we shall see, this is
by no means always the case.

Where estimates of the error variation in x andy are available the variances
can be adjusted by their deduction, and with linearity the regressions once
again become equivalent to one another. Where, on the other hand, the
regressions are not linear, the deviations from linearity will have effects
similar to error variation on the estimates of the regression coefficients and
the deduction of the error variation itself will not suffice to make these
regressions equivalent to one another.
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(iii) Examples
An example of the effect of non-linearity of the regression is afforded

by sternopleural chaeta number in two inbred lines, Samarkand and
Wellington, of Drosophila melanogaster, raised in six different environments,
being all the combinations of two temperatures (25° and 18° C.) with three
types of culture container (third pint milk-bottles, 3" x 1" tubes with yeasted
medium and similar tubes with unyeasted medium). The actual variate
was the mean chaeta number of 10 males and 10 females from each culture.

The observations were made in duplicate on each of two occasions.
Since there was no significant difference between occasions there are thus
18 degrees of freedom each for the estimation of error variation in x andy,
the chaeta numbers of Samarkand and Wellington respectively. The
estimates of error variation in x andy proved not to differ significantly and
so were pooled to give a joint estimate of 037083 based on 36 degrees of
freedom. The values of V, Vi,, Wi,, , V(+), V(5_) and W_) (y) are
shown in table 2, the last three statistics having been divided by 2 to make
the error variation content of the two variances equal to that of V and Vi,.
Samarkand is denoted as line X and Wellington as line Y.

TABLE 2

The Samar/rand (X) and Wellington (T) inbred lines of Drosophila melanogaster.
Sternopleural chaetae in six environments

V, 112242 V, 868542 — 121008 Error variance
V(5+) 369383 V(x...y) 611400 W(x_y)(z+y) —378150 O37083

Regression coefficients

Derived from by,x bxiy b1
— 1•078 —0928 26608

byix —1610 .—0•621 +279
—7•178 —O•139 l324
—6•871 —0146 1'341

—85267 —0•012 1O2'
b015 —l5495 —0065 1138

v'VIVs — — 1287
1315

Perfect fit —6406 —0156 1370

The figures in italics are the values of the coefficients
estimated directly from the data and those in roman are
the values of the remaining coefficients derived from them.

The upper figure in each case is where no correction
has been made for error variation. The lower figure is that
obtained after subtracting the value of the error variation
from each variance.

Estimates of by,, bx1y and bD/s were each calculated directly from the
data and are shown in italics in table 2. Each is also accompanied by the
values of the other two regressions derived from it. Thus byix calculated
from the data is W,5/V5 — l21008/l42242 = — 10781, from which we
derive biy = lJby,x = — 09276 and bD/s = (1 —byix)/(l + by1x) =266084.
Needless to say, the three values found for each regression, one directly from
the data and others by derivation from the other two regressions, do not
agree: indeed some of the disagreements are large. We can, however,

33J1—.D



50 KENNETH MATHER AND P. D. S. CALIGARI

subtract the estimated error variance (0.3 7083) from all the variances and
repeat the calculations. The results, also shown in table 2, are much more
consistent, some of the improvements being very marked; but even so
inconsistencies remain. The reason is, of course, that the regressions are
not simply linear, and the residual variation round the straight regression
line mimics the error variation in its effects but is not removed by subtraction
of the error variation. Thus regression of y on x accounts for only 1 P30459
of the value of 868542 for V, leaving a residuum of 738083 against which
the error variance at 037083 is small. However, b1x is extreme among
the three regressions in the effect of residual variation on it, and if instead
of 037083 we subtract 093352 from each of the variances all the residual
variation, due to both error and non-linearity, is removed.

If after subtracting 093352 from the variances, the covariances remaining
of course unaltered, we recalculate the regressions it makes no difference
which regression we calculate directly, deriving the others from it: the
results are all the same at by,x —64059, b1y —0l56l and bD/S
—13699, as shown in the bottom row of table 2. We can now see that of
the earlier calculations, obtaining bxiy from the data and deriving the others
from it gave the best results in that not only were the regressions so found
least sensitive to the effects of error variation but also least upset by residual
variation stemming from non-linearity of the regression. Indeed when we
look at bD/s, the value found from bx,y before any correction was 1 32,
which became 1 •34 when the correction had been made for error variation,
by comparison with l37 for the perfect fit. The reason for this superiority
of bxiy is not far to seek. Its estimation utilises V, as the denominator and
this is the largest of the variances, all of which, however, have the same
component of error variation. Of all the variances, therefore, V, contains
the lowest proportion of error variation and hence is the least distorted
by it, with the consequence that the estimate of bx1y is least reduced by
error variation, and also by residual variation simulating error variation.
The values found for by1x and bD/ s by derivation from b1y will thus be
more useful for analytical and predictive purposes than those found by
direct estimation.

Thus bxjy, and not bD/s, is the best starting point for consideration of
the genotype x environment interaction shown by the Samarkand and
Wellington lines of Drosophila melanogaster, even though it may be useful
to recast the value found for it into the form of bD/ s This will not, however,
always be the case. The data given by Bucio Alanis (1966) for plant height
in the two lines P1 and P5 of J'/icotiana rustica are insufficient for us to estimate
the true error variation from them. We can, however, find the amounts
of residual variation by which Vp1, Vp5 and V(P1P5) must be reduced to
give the perfect fit values for the three regressions. This turns out to be
3•37 in respect of P1 and P5, and it will be twice that value for P1 + P5
since in this case the variance of the sum has not been divided by 2 to keep
the error component constant as was done with the Drosophila results. It
may be noted that this figure of 337 compares with 676, 382 and 383
which Mather and Vines (1952) observed as the corresponding error
variances in the years 1946 to 1948. It is thus extremely likely that the
whole of the 337 is accounted for by error variation, and that there is
no residual variation due to non-linearity of the regressions which are thus
straight lines.
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The observed values of Vp1, Vp5 etc. are given in table 3, together with
the regressions derived from these observations and also the perfect fit values
of the regressions obtained after deducting the appropriate items for residual
variation. This time bD/s appears to be least affected by the residual
variation with bp11p5 running it a close second. Again this is not surprising
since V(p1p5) is just over twice as large as Vp5 and over eight times as large
as Vp1, so that even though its component of residual variation is twice
that of Vp5 and Vp1, this constitutes a somewhat lower proportion of the
total in V(pl+p5) than in Vp5 and a very much lower proportion than in
Vp1. So bD,s will be disturbed less by residual variation than will bp11p5
and very much less than bp51p1. bD/s will thus provide the best starting
point for the consideration of interaction, though bp11p5 will not be greatly
inferior.

Before we leave the comparison of these various estimates of the regression,
it should be noted that a fourth estimate is possible, since =
bD/s (Bucio Alanis, Perkins and Jinks, 1969). In this case, by contrast
with the three earlier estimates, the numerator is a variance as well as
the denominator, and as such it too will be inflated by error variation or
residual variation round the simple regression line. The values for bD,s
arrived at in this way are given for Drosophila in table 2 and J/icotiana in
table 3. In both cases they are greater than b0is found directly as

Tav.a 3
Plant height of Nicotiana rustica lines I and 5 grown in 16 environments

(Bucio Alanis, 1966)

Vp5 1605 Vp5 63l0 Wp1,p 2752
V(p1+p5) 133.56 V(p,_p5) 2348 W(pj_p&)/(p5+p&) 4705

Regression coefficients
Derived from —

b,15 b51p, b,5
bp1/p5 0436 2293 0393
b511 0583 1•715 0263
bD/S 0479 2088 O352

— — 0419
Perfect fit 0461 2170 0369
The figures in italics are the values of the

coefficients estimated directly from the data, and
those in roman are the values of the remaining
coefficients derived from them.

W(_) (x+y)/ V(+), as would be expected since the denominator is the same
in both cases but the one has error variation in the numerator and the other
does not. In Xicotiana would appear to be a less good
estimator of bD/ s than W(_) (÷,)/V(+); but in Drosophila it appears to
be better and is certainly less sensitive to the subtraction of error variation.
Even so, it is more disturbed than is b,y and the value of b15 derived from
it. So in general there is no indication that the variance ratio offers a
better approach than the regression calculated in the normal way, provided
the best of the regressions is taken as the starting point. In general error
variation should tend to push the variance ratio, and hence the estimate
of bD/s found from it, nearer towards 1.
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3. THE MULTI-LINE CASE

(i) General properties
The treatment of two lines discussed by Bucio Alanis has been generalised

for any number of lines by Perkins and Jinks (1 968a, b). Taking n genetically
different lines, X1.. .X, giving phenotypes x1. ..x, they use the mean in
each environment as a measure of the effects of that environment, in parallel
with Bucio Alanis' use of the sum of the phenotypes of his two lines. The
equivalent of the difference between two lines is the difference between the
phenotype of any one of the n lines, say x1, and the mean. This reflects
the overall genetic departure, d, of the line in question from the mean as
well as the genotype x environment interaction, but since d is constant ,
the regression of x1 —on £, is a measure of the rate change in the interaction,
g, with change in the environment, e.

Thus
— d(xj—.).-ax

It is often, however, more convenient to follow Perkins and Jinks and find
the regression of x1 on £ i.e. the rate of change of g + e on e. This is, of course,

dx1 dx1l+1 = =
dx

dS(x)
1

n .
where S(x) is the sum of all the x's in a given environment. S(x) is obviously

1 1n
not independent of x1, but noting that S(x) = x1+ S(x) we can write

1 2

dx 1dS(x)

l+1=n-- =n/—Vd.-
dS(x) j X1

1

/(ddS(X)
I kdi dx1

dS(x)

/ \ dx1 / j \ dx1 dx1 dx1

dS(x)
This will be a straight line only if is constant, that is only if

f(x2 + x3. ..x, z) = lcf(x1, ) where k is independent of x and z. That

dS(x) dx2 dx
—p-—— is constant does not, of course, imply that —, — etc. are constant
dx1 dx1 dx1

since they could individually contain terms in x which balanced out on
summing over x2.. .x,. If, however, a number of the lines X1... X all gave
rectilinear regressions when compared with the sums, or means, of their
fellows in this way, it would be most unlikely for their relations one with
another not to be such that their relative rates of change were constant
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dx2 dx3 dx3(that is for their relations to be such as to give —, —, ..., —, ..., etc. all
dx1 dx1 dx2

constant) though of course not necessarily with the same relative rates of
change.

dS(x)
Now measures the rate of change of the summed phenotypes of all

the remaining lines, X2. .. X,, on that of X1. It reduces to in the two line

case and by analogy with by1x the regression to which it gives rise may be
denoted as b(X2. ..X)/X1.

Then
l+fl1 = n/(l+b(x2...x)/x1)

and

bx2...xIx1= fjI
Hence if 1 + fl1is negativeor isgreater than n, the number of lines, b(x2. ..x)Ix1
must be negative and X1 is responding to change in the environment in
the opposite direction to the sum, or mean, of the rest of the lines. If
1 + fl, lies outside the range 0 to n, /3 itself must lie outside the range
—1 to n — I, which in the two line case reduces to relation already found
since fl then becomes bD/s and by,x must be negative if it lies outside the
range — I to 1. The relation of fl and b(X2+X3)/Xj is shown in fig. 3 for the
three-line case.

One further point should be noted about this relationship. The calculation
of 1 + fly, as the regression of xj on g is open to criticism since must include

and so is not independent of x1 (Freeman and Perkins, 1971; but see also

Freeman, 1973). We now see, however that,

1 +fl = flbX1/(X2...X)
1 +b(x1fx2...x)

and is obtainable therefore from the regression of x1 on S(x2.. .x) or, by
derivation, from the regression of x1 on the mean of the remaining n —.1 x's.
The statistical difficulty can therefore easily be avoided without need to
resort to the inclusion in the experiment of additional individuals to supply
an independent estimate of the environment, as these authors recommended.
We shall see, in the next section, a comparison of values so derived for a
set of 1 + fl's with those obtained directly by regression on .

In the multi-line analysis we implicitly compare each line in turn,
through the relevant 1 +fl, with the mean of the remaining n— 1 lines.
We can, however, if we so wish compare each line with every other in pairs
by the two-line analysis of Bucio Alanis and Hill. This may, of course,
be undertaken directly in each case by finding the differences and sums,
environment by environment, and then estimating the regression bIs as

we did in the previous section. There would be (n —1) such calculations,

and if n is at all large considerable labour could be involved. The values
of the bD/ S'S are, however, obtainable much less laboriously from the 1 + fl's.

33/i—D 2
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b(x2+x3)/x1 I

bx1/(X2+X3)
and
b(x2+ X3)/X1

_I__t

I —2

—3

—4

5

—6

I bx11x2+x3,

Fio. 3.—The relations of bxlitx2+x,>and b(X2÷X,)/xj with fi in the three line case.

Considering lines X1 and X2, the regression of the one on the other, is

dx2 dx2/dx1 1+6
bx2ix1

= =
1+p1

and

bD/S — l—b211 =
(i 1+fls) I(i+

1+2\ (1+fl1)—(l+p2)
—

l+bx21x1 i+p1 /
= ___________

Indeed, by simple extension, we can compare any group of lines with any
other group, with which it has no line in common, whether the two groups
together do or do not include all n lines. Let us consider two groups, which
we will denote as A and B, comprising lines 1.. .j and Ic. ..I respectively.

0

p

bx1/(x2+ X3) b(x2÷ Xs)/Xi
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Then, where A is the mean of fl. .fl, and PB is the mean of /3k•

and similarly
= dXk...i

dx
Then,

b — d(k...j) — d(k...j) d(,...5) — 1 +PB—

d(1..,1)
— d / dg

—

l+PA
and

b (l+PA)—(1+PB)=
(1 + PA) + (1 + PB)

Since the properties in interaction of any group of lines may be compared
with those of any other group by this means, the way is open for a great
variety of detailed analyses, whether hierarchial or orthogonal (where this
is possible and meaningful) of the n lines in the multi-line case.

(ii) An example
Data for illustrating multi-line analysis are afforded by the behaviour

of five inbred lines of Drosophila melanogaster, Wellington (W), Samarkand
(S), Edinburgh (E), Texas 19 (Tl9) and Texas 20 (T20) raised in third-pint
milk bottles at three temperatures, 25°, 21.50 and 18° C. The character
recorded was again number of sternopleural chaetae, and the variate was
the mean chaeta number of 10 females and 10 males. Also, the observations
were made in duplicate so allowing an estimate of error variation to be
obtained for 15 degrees of freedom from the comparison of the 5 x 3 =
15 pairs of duplicate observations.

TABLE 4

Sternopleural cha eta numbers in five inbred lines of Drosophila melanogaster raised at three
temperatures. Each entry is the average of 20 males and 20 females taken equally from two
replicates

Temperature (°C.)

Line 250 215° 18° Mean 1+ 1+'
W 18•275 18975 19•225 18•8250 08534 08533
S 21050 20825 20•975 20•9500 —0lO82 —01136
E 23•575 23350 23950 23•6250 02l63 0•1684

T19 16350 18•450 18550 l77833 20913 2•0007
T20 16•825 18•475 18•975 18•0916 l•9471 19431

Means
Overall 192150 200150 203350 198550
Excluding W 194500 202750 2O6l25 201125

The results are set out in table 4. The entries in this table are the means
of the two duplicate observations and as such were found to be subject to
an error variance of 0064725. The table also gives the mean for each of the
five lines over all three temperatures and the mean for each temperature
over the five lines. It will be noted that the lines differ in their overall
chaeta numbers, and that the temperatures also differ, chaeta number rising
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in general as temperature falls though 21.50 is much nearer to 18° than it i
to 25° in its effect on chaeta number.

We can then find the value of 1 + /3 for each line as the regression of the
values for that line at the three temperatures on the corresponding means
of all five lines. These five values of 1 + /3, one for each line, are shown
down the right hand margin of the table. As we have seen these estimates of
I + /3 are open to criticism in that the line means are not independent of the
overall means on which they are regressed. As already noted, however,
we may estimate 1 + /3 from the regression of each line on the mean of the
remaining four. To take Wellington as an example, the mean of the
remaining four lines is shown for each temperature along the bottom of
the table. The regression of W on the mean of the other four lines is then
found as the ratio the sum of cross products

[(l82750 x 19.4500) + (18.9750 x 202750) + (l92250 x 206l25)]
—(564750 x 60.3375)

bears to the sum of squares of the means of the four remaining lines,

(19.45002+20.27502+20.61252) _*(60.3375)2
and turns out to be 0823067.

Now where for brevity we denote by R the remaining four lines as a group

bw1 4bw15(R)
and since n = 5, from the result on page 53

SbW/S(R) 5.bw,f 5bw/kl+/3= = -=
l+bw/s(x) l+ibw/R 4+bwift

where 1 + /3' is used to distinguish this estimate from 1 + /3 as found earlier.
Thus for Wellington

1+/3'w = ________ = 0•853261.

The five values of 1 + ', so found, one for each line, are entered on the
right of table 4 where they are convenient for comparison with the five
corresponding values found earlier for 1 + /3. The differences between the
two sets of estimates are small, in some cases very small. Evidently the
lack of independence of the line mean and the overall mean has made but
little trouble in the direct estimate of 1 + /3. In any case, however, the values
of 1 + /3' which are not open to this objection are available for use in their
place, except in the analyses of variance of the lines where they cannot be
employed to calculate the regression and remainder sums of squares directly
in the customary fashion. If we carry out such analyses using 1 +j3, we
obtain the results shown in table 5 from which it can be seen that, when the
mean squares are compared with the error variance of 0064725, the regres-
sions for W, Tl9 and T20 are significant, that there is heterogeneity of
the regressions and that no remainder mean square is significant. Evidently
the lines respond differently to changes in temperature but all these changes
are adequately described by a simple linear relation with the overall effect
of the environment, and most likely with one another.

Whether judged by 1 +/3 or 1 +fl', T19 and T20 respond to the environ-
mental change in much the same way. W responds in the same direction
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but to a somewhat lesser extent. E responds but little to environmental
change as does S also, but whereas such change as E shows is in the same
direction as T19, T20 and W, the change in S appears, insofar as it is real,
to be in the opposite direction, whether judged by 1 +fls or 1 +fl's since
both are negative.

TABLE 5

Regression analysis of variance of the experiment with the five inbred lines of Drosophila melanogaster

Line
Mean squares

for d.f. W S E T19 T20
Regression 1 04847 00078 00311 29112 25235

Remainder 1 00003 00185 O1526 01755 00082

d.f. S.S. M.S. P
Heterogeneity of 4 52927 1323 <0001

regressions
Remainder sum 5 03551 0071 > 020
Error 15 — 00647 —

It is of interest to compare the difference in response to change in the
environment between W and S in this experiment with that observed for the
same lines in the other experiment discussed in an earlier section. We may
proceed in several ways to find bD/s for these two lines from the present data.
We may derive it as

b — (l+w)—(l+s) — 0.8534—(—0I082) — 129oD/S —
(l+flw)+(l+fls)

—
08534±(—0l082)

—

or, for comparison, from 1 + P'w and 1 + 's as

b — 0.8533—(—0.1136) 1.307D/S —
0•8533+(—0ll36)

—

We may also, of course, proceed by abstracting the data for W and S and
treating them by the methods we have earlier discussed for the two-line
case. We then find bD/s = 1195 by direct estimation from the differences
and sums of W and S. First finding the regression of S on W and then
deriving bD/s from it gives 1303 and the same procedure but regressing
W on S gives 2400, again showing how the high proportion of error variation
in the variance of Samarkand distorts the estimate. Finally bD/ s =/VD/ V = I290. These various values agree well with bDf s as found in
the earlier experiment, and help to convince us that, despite the relative
insensitivity of S to change of temperature, it must in fact be altering in the
opposite direction to W, i.e. whereas W's chaeta number rises with falling
temperatures that of S falls though at a much lower rate.

All the estimates of bD/s for W and S, whether derived from the multi-line
analysis or the two-line treatment, agree well apart from that obtained from
the regression of W on 5, which as we saw in the earlier section is distorted
to a much greater extent than the rest by error variation. Similar sets of
estimates of bD/s for all the 10 pairs of lines are set out in table 6. All but
one of the pairs, S and E to which we return below, give sets of estimates
showing good internal agreement. The only proviso we must make is, of
course, that where an estimate is derived from the regression of one line
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on the other distortion must be expected if the line used as the independent
variate has a low variance and hence a high proportion of error variation.
In particular the estimates of bD/s derived from the multi-line analysis are
fully consonant with those from the two-line treatment, as indeed the
discussion in the previous section would lead us to expect—and once the
values of 1 + fi are available they can be obtained with much less labour.
It will be seen too that the estimate of bD/S derived from the multi-line
analysis is in general affected but little by the choice of 1 + or I + fi' from
which to derive it.

TABLE 6

Values of bD/S in the experiment with five inbred lines of Drosophila melanogaster

W/S W/E WIT 19 W/T20 S/E

(a) l290 0596 0420 0391 3000
(b) 1307 0670 0402 0389 5•145

(c) 1195 0334 0436 039l 0553
(d) 2400 0•225 0•442 039l 0661
(e) 1303 06l3 0422 0391 0176
(f) l•290 0696 0•445 0391 0688

SIT19 SJT2O E/T19 E/T20 T191T20

(a) 1109 1118 0813 0800 0036
(b) 1•120 1124 0844 0840 0015
(c) 1134 1112 0818 0732 0O50
(d) l•144 1•128 0•914 O•824 0041
(e) 1290 1416 0144 0143 0058
(f) l•144 1•127 0919 0833 0105

The sources of the estimates are:
Multi line analysis (a) from 1 +

(b) from 1+'
Two line treatment (c) by direct calculation

(d) from bA/B
(e) bB/A
(f) ./Vr/Vs

where A/B are the two lines being compared

The comparison of S and E requires special mention, however. Here all
the estimates of bD/s obtained by a two-line treatment are less than 1, and
all lie between 055 and 069 except for that obtained from the regression
of E on S which at 018 would appear to show the distortion commonly
encountered when the variance of Samarkand is directly involved in the
estimation. Yet the multi-line analysis yields an estimate of bD,s in excess
of 1, whether based on 1 + or 1 + '. Thus the multi-line analysis suggests
that E and S are responding to change in temperature in opposite directions,
while the two-line treatment suggests they are changing in the same direction.
Now the two-line estimates all involve the covariance of E and S, and this
is positive. At the same time it is small, 00375. Thus should this small
positive covariance be merely the outcome of sampling variation, all the
two-line estimates will reflect it by being less than 1. The multi-line analysis
suggests that this may well be the case. S is consistent in showing bD/S> 1,
i.e. change in opposite direction, when compared with W, Tl9 and T20.
E is consistent in showing bD/s < I i.e. change in the same direction, when
compared with these same three lines, and W, T19 and T20 are consistent
among themselves in giving every indication that they all change in the
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same direction. Thus the two-line treatment of S and E gives a result
inconsistent with all the other comparisons among the five lines. The multi-
line analysis yields a bD/ s which makes the comparison of S and E consistent
with all the other comparisons among the five lines, again because the
covariances of S and E with the mean of all five lines appear with opposite
signs, that of S being negative: indeed S is the only line to produce such
a negative covariance with the overall mean. Thus the discrepancy stems
from the covariance of S and E being small and positive (OO375) while that
of S and the five-line mean is small and negative (—OO720). Whichever
analysis is used, the sign of the small covariance that it turns on is critical,
and from this stems the difficulty and uncertainty in interpreting the
behaviour of a line, which like S is relatively insensitive to the environmental
factor, here temperatures, at issue. Other data, like that quoted in the
earlier section, combine to point to S responding to change in temperature
in the opposite direction to W, and so support the outcome of the present
multi-line analysis: but however this may be, it is clear that S is relatively
very much less sensitive to changes of temperature than are the other lines,
and this is indicated more clearly by the low value of its variance over
environments, than by any of the regression coefficients.
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