CYTOGENETIC STUDIES ON NATURAL POPULATIONS OF GRASSHOPPERS WITH SPECIAL REFERENCE TO B CHROMOSOMES

I. GONISTA BICOLOR*

M. SANNOMIYA Institute of Biology, Oita University, Oita, Japan

Received 29.v.73

SUMMARY

In Gonista bicolor

 $(2n\varphi = 22 + XX + 0 \sim 2B_1 + 0 \sim 7B_2, 2n_3^{-} = 22 + XO + 0 \sim 3B_1 + 0 \sim 16B_2)$ frequencies of males with B₁'s in four natural populations were 29, 35, 14 and 72 per cent, respectively, and those with B₂'s were 97, 95, 76 and 92 per cent, respectively.

 B_1 's were mitotically highly stable in the germ line of the males as well as in the somatic lines of both sexes. The mean numbers of B_1 's per male were 0.34, 0.50, 0.14 and 1.00, respectively, in the four populations.

 B_2 's were mitotically unstable in somatic lines of both sexes. In the germ line of the males the instability of B_2 's was a characteristic confined to an early stage of development. Therefore, numbers of B_2 's in primary spermatocytes were variable from follicle to follicle within the individuals, though they were usually constant within the follicles. Mean numbers of B_2 's per follicle were also different among the four populations, *i.e.* 2.96, 1.77, 1.37, and 2.97, respectively.

Different tissues showed different mean numbers of B_2 's per cell; higher numbers in the ovariole walls than in the gastric caeca (females), and higher numbers in the germ line than in the gastric caeca (males). An estimation of original zygotic numbers of the males indicated that different mean numbers of B_2 's between somatic and germ lines and between different somatic lines were accounted for on the basis of tendency to elimination of B_2 's in the somatic lines.

1. INTRODUCTION

B CHROMOSOMES (supernumerary or accessory chromosomes) have been reported in a large number of plant and animal species and extensive literatures have been reviewed by White (1954), Müntzing (1958, 1966), Rutishauser (1960) and Battaglia (1964). There are two kinds of B chromosomes, mitotically stable and unstable. Thus four Acrididian species have stable and five have unstable type of B's (cf. John and Lewis, 1968, p. 49). Additional instances are *Acrida lata* with a stable type of B (Kayano, Sannomiya and Nakamura, 1970), and *Atractomorpha bedeli* with an unstable type of B (Sannomiya and Kayano, 1969). In studying chromosomal variation in an Acrididian grasshopper, *Gonista bicolor* de Haan $(2n\varphi = 22 + XX, 2n_d = 22 + XO)$, the writer encountered both mitotically stable and unstable types of B's, which are dealt with in the present paper.

* Contribution from the Institute of Biology, Oita University, No. 85.

2. MATERIALS AND METHODS

A total of 9 females and 109 males of *Gonista bicolor* were collected at four well separated locations: 35 males at G_s (Goshi-mura, Kikuchi-gun, Kumamoto-ken, in 1959), 20 males at Ks (Kashii, Fukuoka-shi, Fukuokaken, in 1959), 29 males at Ot (Ozi-machi, Oita-shi, Oita-ken, in 1961), 9 females and 25 males at Kg (Kagamiyama, Karatsu-shi, Saga-ken, in 1970). The testes were fixed with the fluid devised by Newcomer (1953) and squashed in iron-acetocarmine, or stained in alcoholic hydrochloric acidcarmine and squashed in 45 per cent acetic acid (Snow, 1963), a single follicle being squashed in each preparation. Somatic chromosomes were studied in 9 females and 13 males from Kg, in which the cells of the gastric caeca or the cells of the ovariole walls (female) were used. The males after removal of testis were injected with 0.02 c³ of 0.03 per cent aqueous solution of demecolcine for 18-24 hours. To females 0.05 c³ of the solution was applied. The gastric caeca and ovarioles were fixed with acetic alcohol (1:3) and stained with alcoholic hydrochloric acid-carmine (Snow, 1963).

3. Observation

(i) Basic complement and B-chromosomes

The somatic chromosome complement of G. bicolor basically consisted of 2n = 22 + XX in the female and 2n = 22 + XO in the male. The basic complement showed 11 bivalents plus one X (11 II+X) in the primary

	Freq	uency		Frequ	uency
Configurations	0/	Obs.	Configurations	0/	Obs.
Comgutations	/0	cens	Comgurations	70	cens
2B, ∫ ¹ II	40.6	(115)	(1 III+3 I	1.3	(2)
1 [2 I	59.4	(168)	3 II	16.5	(25)
_			$6B_2 \langle 2 II + 2 I \rangle$	49.7	(75)
$_{3R} \int 1 II + 1 I$	38.1	(16)	1 II + 4 I	28.5	(43)
$2D_1 \int 3 \mathbf{I}$	61.9	(26)	(6 I	4 ∙0	(6)
эр (1 II	80.9	(2002)			
$2\mathbf{D}_2 \stackrel{2}{\uparrow} 2\mathbf{I}$	19.1	(471)	$\int 3 II + 1 I$	9.5	(2)
		. ,	$\frac{12}{11+3}$ I	38.1	(8)
$\int 1 III$	1.0	(16)	$^{/B_2}$ 1 II + 5 I	38.1	(8)
$3B_{\circ} \downarrow 1$ II + 1 I	55-2	(888)	71	14.3	(3)
3 I	43.8	(703)			(-)
(I IV	0.2	(2)			
1 III + 1 I	0.9	(8)	$\begin{bmatrix} 1 \\ 111 + 6 \end{bmatrix}$	6.7	(1)
4B ₆ ∠ 2 II	38.0	(322)	$9B_{2} \downarrow 4 11 + 1 1$	13.3	(2)
1 II + 2 I	46.5	(395)	$\frac{3}{3}$ 11 + 3 1	40.0	(6)
4 I	14.4	(122)	$\left(2 \text{ II}+5 \text{ I}\right)$	40.0	(6)
(1 IV+1 I	0.7	(1)			
1 III + 1 II	0.7	(1)	(1 IV + 3 II + 3 I)	25.0	(1)
1 III + 2 I	1.5	(2)	1 III + 2 II + 6 I	25.0	(1)
$5B_2 2 11 + 11$	37.9	(48)	$13B_2 \rightarrow 5 II + 3 I$	25.0	(1)
1 II + 3 I	39.5	(51)	4 II + 5 I	25.0	(1)
5 1	19.5	(25)		40 0	(1)

 TABLE 1

 Pairing of B's at MI in primary spermatocytes

spermatocytes. Most of the individuals were found to contain B chromosomes $(0 \sim 3 B_1$'s and $0 \sim 16 B_2$'s) in addition to the basic complement. All the B chromosomes were telocentric, as well as the autosomes and the X chromosome (plate I, figs. 1-2). B_1 was medium sized (as large as the 7th or 8th autosomes) with a large heterochromatic block at the proximal region (plate I, fig. 3). Except at pachytene, diplotene, and diakinesis, B_1 's were not distinguishable from the autosomes. B_2 's were smaller than the smallest A's and were stained like as the proximal region of the A's (plate I, figs. 3-7). In primary spermatocytes no pairing occurred between B_1 and B_2 , while B_1 's paired into bivalent and B_2 's paired into bivalents, trivalent, etc. (table 1; plate I, figs. 3-7).

(ii) Mitotic stability and instability of B's

Numbers of B_1 's were variable among individuals but they were generally constant within the individuals in the somatic cells as well as in the primary spermatocytes. There were two exceptions which showed slight variation in the number of B_1 's in primary spermatocytes within the follicles as follows:

			Total
Case	$2B_1$	$3B_1$	cells
1	40	1	41
2	3	18	21

On the other hand, in 62 out of 98 males with B_2 's the number of B_2 's per cell varied from follicle to follicle within the individuals, while in the remaining 36 males the numbers of B_2 's were constant within the individuals (table 2; appendix tables 1-4). In spite of inter-follicular variation, no variation in the number of B_2 's was found within the follicles, other than in three exceptional cases out of 683 follicles as follows:

Case	$0B_2$	$1B_{2}$	$2B_2$	$3B_2$	$4B_2$	$5B_2$	$6B_2$	7B ₂	Total cells
а	48		14	3					65
b						26		8	34
с			34	20					54

In the cells of the gastric caeca numbers of B_2 's varied from cell to cell as well as in the cells of the ovariole walls. In comparison between average number of B_2 's per cell of the gastric caeca and that per primary spermatocyte, 10 males showed higher numbers in primary spermatocytes than in the cells of the gastric caeca, two males showed equal numbers, and one male showed a lower number in the primary spermatocytes than in the cells of the gastric caeca (table 3). The mean number of B_2 's per primary spermatocyte in 13 males was 2.86 and that per cell of the gastric caeca was 2.09. In comparisons made between gastric caeca and ovariole walls in 9 females, the mean number of B_2 's per cell was higher in the ovariole walls (1.97) than in the gastric caeca (1.63) (table 4).

(iii) Populations

It was a surprise to find that all the males from Gs, Ks and Kg and the great majority of the males from Ot had either B_1 or B_2 or both. Table 5 shows frequencies of B's in the four natural populations (cf. appendix

tables 1-4). The frequencies of B_1 's are significantly different between the populations ($\chi^2 = 29.52$, d.f. = 3, p < 0.01). Overall means of numbers of B_2 's per follicle were different between the populations: 2.96 in Gs, 1.77 in Ks, 1.37 in Ot, and 2.97 in Kg ($F_{105}^3 = 10.05$, 0.05 > P > 0.01; table 6; cf.

	us, ns, U	t, ana ng								
D	No. of males									
Ba's per male	Gs	Ks	Ot	Ke						
0	1	1	7	2						
1	2	6	5	2						
2	4	1	6	1						
3	2		ĩ	î						
4	2		2	î						
(Sub-total)	$(\overline{\mathbf{n}})$	(8)	(21)	(7)						
0-1		1								
0-2	1									
1-2	1	5	7	1						
1–3	2			1						
1-4	1			2						
1-5				1						
1–9	1									
2–3	3	1	1	1						
2-4	3	2		3						
2–5	1	1		1						
2-6	2									
2-13	1									
3-4	3	1		1						
35	2			3						
3-6	1			1						
3-7		1								
4-0				1						
4-/				I						
4-9	1									
00 6 0	1			1						
U-0 Total malas	25	20		1 25						
i otal males	30	20	29	20						
No. of follicles obs.	167	113	96	307						
No. of cells obs.	4239	2911	3810	not						
Mean no. of B ₂ 's				counted						

TABLE 2										
Number	of	B ₂ 's	in	males Gs.	of Ks.	G. Ot	bicolor and Kg	from	four	populations,

appendix tables 1-4). In these populations the numbers of males with variable numbers of B_2 's are positively correlated with the overall mean of numbers of B_2 's per follicle (table 7).

1.77

1.37

2.97

2.96

per follicle

4. ESTIMATION OF ORIGINAL ZYGOTIC NUMBERS OF B's

In respect of the mechanism concerned with the maintenance of B_2 's in the populations, the original zygotic numbers of B_2 's in the Kg population were estimated by the following procedure.

First, it was assumed that the predominant follicle type of any male (table 3) represented the original zygotic number of B_2 's from which it was developed. Thus original zygotic numbers of B_2 's of 13 males were inferred

			B	CI	HR	0	M	0	so	DN	1E	s	0	F	G	R.A	4S	SI	HO)P	Pl	ER	lS						255
Mean no	of B ₂ 's	00-0	00-0	1.00	1-00]	1.00 (1.13 /	2-33	1.18 /	2-22)	0-98 /	1-80 (0-88)	2.09 (1-68 /	2-91 (2.53)	3-00 (2-81)	3-89 (3-25 /	3-94)	2-87)	5-82 (2.14 /	7-22)	6-67]	2-861	2.09 }
T_{otol}	no.	12	36	20	50	10	8	6	11	18	62	15	34	11	31	11	83	14	42	6	12	17	23	11	29	6	43	I	1
	16B _s		I				I	I	I		I	I	I	I	ļ	I	I	I		I	I	Ι	1	I	I		2.3	I	0-2
	$11B_2$	I	I	Ι	I			1	1			I		1	I]		I	-	1	I	ļ	I	I	I	I	2.3	I	0-2
	$10B_2$	I	Ι	I		I	I	١	1	I	I	I	I		1	I			Ι	1	ł	I	I	I	I	I	7-0	1	0-5
	$9B_2$	I	l	I		Ι	I	١	l			١		I	I	ļ	3.6	Ì				I	I	I		I	7-0	I	0.8
ls with	$8B_2$	I	I			I	١	I	I	Ι	I	I		Į	I	Ι	I	l]	Ι		I	1]	33-3	11-6	2.6	6.0
es or cel	$7B_2$	I	1		I	1	ļ		I	۱	I	Ι	1		I	I	1.2	I	2.4	l	ļ	Ι	I	18-2	3.4	55.6	16-3	5.7	1.8
of follicl	6B ₂	1						I	I	١			I	I			1.2		2.4	1	8.3	I	4.3	54.5		11.1	18.6	5.0	2.7
cy (%) -	5B ₂]		I	ļ			I	1	I	I	13.3	I	I	[I	7-2		2.4	11.1	8.3	5.9	8.7	18-2	6.9	1	23-3	3.7	4.4
Frequen	$4B_2$		I		I	I	I	11.1	I	$11 \cdot 1$	1.6	I	I	I	I	9.1	8-4	[14-2	66.7	25-0	82-3	17-4	9.1	3-4	Ι	7.0	14.6	5.9
	$3B_2$	I	I		1	I	12.5	22.2	1	22.2	4·8	6.7	3.0	9.1	6.5	72.7	18.1	100	31.0	22.2	16.7	11.8	21.8	۱	17-3	Ι	1	20.5	10.1
	$2B_2$		١	١	I	I	25-0	55.6	27.3	44.5	12.9	13-3	5.9	6.06	64.5	18.2	21.7		40.5	ļ	41.7		34.8		31.0	ļ	4.6	17.1	23.8
	$1B_2$		1	100	100	100	25-0	11.1	63-6	22.2	51.6	66.7	67.6	1	19-3	I	37-4	I	7.1	I			13-0	I	27-6	I	I	23.1	31.7
	0B,	100	100	3	1	I	37.5		9.1	I	29.1	ļ	23.5	I	9.7	ļ	1.2	I]	I	l	ł	١	I	10.4	l	l	7.7	17.0
	No. of B1	' cr.	0.00		. –	1	1	0	0	1	1	I	1	1	1	1	1	1	1	1	1	1	1	2	2	0	0	1-08	1.08
	Male no.	(Foll	22 CC	Foll	10 \ G.C.	(Foll.	9 G.C.	(Foll.	1 G.C.	. (Foll.	12 G.C.	. (Foll.	¹³ G.C.	. (Foll.	¹⁴ G.C.	. (Foll.	l ⁵ (G.C.	· · (Foll.	¹⁶ G.C.	. Foll.	17 G.C.	. (Foll.	¹⁸ G.C.	, Foll.	²⁴ G.C.	- (Foll.	7 (G.C.	(Foll	Mean G.C.

Frequencies of B's in the follicles (Foll.) and cells of the gastric casea (G.C.) of 13 males from the Kg population TABLE 3

to be $0B_2$ (1), $1B_2$ (3), $2B_2$ (3), $3B_2$ (2), $4B_2$ (2), $6B_2$ (1) and $7B_2$ (1), with the mean of the zygotic number 2.77 per male (number of males in parentheses, table 8). In contrast, the original zygotic numbers of B₂'s of the 13 males were inferred to be $0B_2$ (1), $1B_2$ (6), $2B_2$ (5) and $5B_2$ (1) on the basis of the frequencies of cell types in the gastric caeca (mean number of B₂'s per male 1.62, table 8).

TABLE 4 Frequencies of B's in cells of the ovariole walls (O.W.) and cells of the gastric caeca (G.C.) of 9 females from the Kg population

		Nf			Freque	ncy (%) of cel	lls with			C .11	14
Fema	le no.	B_1	OB_2	$1B_2$	$2B_2$	3B ₂	4B ₂	$5B_2$	$6B_2$	$7B_2$	obs.	of B ₂ 's
. 1	(O.W.	1	1.0	99.0	_		_				100	0.99)
1	G.C.	1	7.5	91.2	1.3	—			—		80	0.94
	0.W.	0	32.0	24.0	44·0		—				100	1.12
2 (G.C.	0	78.7	18.8	2· 5						80	0.24
	0.W.	2	1.0	96.0	3.0				_		100	1.02
S	G.C.	2	18.8	76.2	3.7	1.3					80	0.88
.	O.W.	1	22.0	76.0	2.0						100	0·80 j
4	G.C.	1	3 5•0	51 ·3	10.0	3.7		_		_	80	0.83
- 1	O.W.	1		14.0	64.0	21.0	$1 \cdot 0$				100	2.09
5 {	G.C.	1	10.0	42· 5	38.8	5.0	3.7	—		_	80	1.50
cl	O.W.	2	1.0	$1 \cdot 0$	24.0	49.0	16.0	8.0	1.0		100	3·06 j
0	G.C.	2	_	25.0	30.0	36.2	7.5		1.3	_	80	2.31
- 1	O.W.	1		2.0	39.0	43 •0	14.0	2.0		_	100	2·75 j
- 1	G.C.	1		3.7	3 5•0	47.5	11.2	1.3	1.3		80	2.75
	0.W.	2	—	2.0	23.0	40.0	26.0	6.0	1.0	2.0	100	3·22 j
8	G.C.	2		17.5	43.8	26.2	7.5	3.7		1.3	80	2.41
0	O.W.	1		_	29.0	65.0	4.0	2.0			100	2·69 ĵ
9 {	G.C.	1	—	1.2	30 •0	56-2	10.0	1.3		1.3	80	2.85
M	(O.W.	1.22	6.3	34.9	25·3	24.2	6.8	2.0	0.2	0.2		1.97)
wean	(G.C.	1.22	16.6	36.4	21.7	19.6	4.4	0.7	0.3	0.3		1.63

Second, frequencies of different types of sperms to be produced in the males were calculated on the basis of frequencies of different follicle types and frequencies of pairing configurations of B₂'s at MI. If, for example, the cells with 1 II of B_2 's gave rise to sperms all with $1B_2$ and those with 2 I's gave rise to the sperms with $0B_2$, $1B_2$ and $2B_2$'s in the ratio 1:2:1, the follicles with $2B_2$'s (17.1 per cent) would produce sperms with 0, 1 and 2B's in the frequencies 0.817, 15.467 and 0.817 per cent, respectively, since in the follicles with 2B's 80.9 per cent were cells with 1 II and 19.1 per cent were cells with 2 I's (cf. table 1). On such assumptions relationships between follicle types and the resulting gametic types were calculated as shown in table 9. Then, the frequencies of the gametes produced in this population was calculated to be 21.36 (0B₂), 38.98 (1B₂), 23.20 (2B₂'s), and so forth (table 9).

Third, frequencies of zygotic types in next generation were calculated assuming that the frequency distributions of B₂'s in the eggs were the same as in the sperms, and matings took place at random. Then, among 13 zygotes 0.59 would be individuals without B_2 , 2.17 with $1B_2$, 3.27 with $2B_2$'s 2.90 with $3B_2$'s and so on (table 8). These values are rather close to those of the

256

B CHROMOSOMES OF GRASSHOPPERS

			1. G	, s			
			Maria - CD /				
	0B1	lB ₁	2B ₁	3B ₁	Total	(%)	per male
No. of males without B ₂ 's		1			1	(2.9)	
No. of males with B ₂ 's	25	7	2	—	34	(97 ·1)	
Total	25	8	2	—	35	(100.0)	0.34
(%)	(71.4)		(28.6)		(100.0)		
			2. K	ſs			
			No. of	males	with		

		TABLE 5		
Frequencies	of B's in	natural populations	of G.	bicolor

							Mean no. of B.'s
	0B1	1B ₁	$2B_1$	3B1	Total	(%)	per male
No. of males without							
B ₂ 's	_	1	_		1	(5.0)	_
No. of males with B ₂ 's	13	4	1	1	19	(95.0)	<u></u>
Total	13	5	1	1	20	(100.0)	0.50
		<u> </u>					
(%)	(65.0)		(35.0)		(100.0)	—	<u> </u>

3.	Ot
~.	v.

			Mean no. of B.'s				
	0B1	1B ₁	2B ₁	3B ₁	Tstal	(%)	per male
No. of males without	_	_					
B ₂ 's	7				7	(24.1)	_
No. of males with B ₂ 's	18	4			22	(75.9)	
Total	25	4			29	(100.0)	0.14
		\subseteq					
(%)	(86-2)		(13.8)		(100.0)	—	—

4.	Kg	

			No. of				
	0B1	1B ₁	2B ₁		Total	(%)	Mean no. of B ₁ 's per male
No. of males without		,		1	0	(0,0)	
B ₂ 's		1		1	2	(8.0)	
No. of males with B_2 's	7	11	5		23	(92.0)	
Total	7	12	5	1	25	(100.0)	1.00
(%)	(2 8 •0)		(72.0)		(100.0)	—	
			No. of f	emales	s with		
							Mean no. of B_1 's
	0B,	1B,	$2B_1$	3B1	Total	(%)	per female
No. of females without			-	-		(0.0)	
B ₂ 's						(0.0)	
No. of females with B ₂ 's	1	5	3		9	(100.0)	1.22
		\subseteq					
(%)	(11.1)		(88.9)		(100.0)		

Gs		Ks		Ot	Kg		
0.00		0.00	0.00		0.00		
1.00		0.86	0.00		0.00		
1.00		1.00	0.00		1.00		
1.00	3.00	1.00	0.00		1.00		
1.33	3.13	1.00	0.00		1.80		
1.60	3.17	1.00	0.00		1.86		
2.00	3 ⋅25	1.00	0.00		2.00		
2.00	3.33	1.00	1.00		2.00		
2.00	3.50	1.20	1.00		2.09		
2.00	3.60	1.20	1.00	1.50	2.22		
2.00	4.00	1.29	1.00	2.00	2.33		
2.14	4.00	1.67	1.00	2.00	2.73		
2.20	4.00	1.75	1.17	2.00	2.91		
2.25	4.00	2.00	1.25	2.00	3.00	3.94	
2.50	4.33	2.50	1.33	2.00	3 ⋅05	4.00	
2.60	4 .50	2.75	1.33	2.00	3·4 2	4.31	
2.67	5.20	3.00	1.40	2.33	3.89	4.67	
3.00	5.33	3.10	1.40	3.00	3·9 2	5.00	
	5.50	3.33		4.00		5.82	
	6.33	4 ⋅67		4.00		7.22	
Ove	erall mean) 2·96	$\begin{pmatrix} \text{Overall mean} \\ 1.77 \end{pmatrix}$	Over	all mean 1·37	$\begin{pmatrix} Overal \\ 2 \cdot 1 \end{pmatrix}$	l mean) 97	

TABLE 6 Mean numbers of B_2 's per follicle of 109 males from four populations

present generation inferred from frequencies of follicle types than those inferred from frequencies of cell types in the gastric caeca (table 8).

5. DISCUSSION

(i) Factors affecting mitotic stability of B's

Though both B_1 and B_2 of *G. bicolor* are highly stable during spermatogonial cell divisions they are different in that B_1 is mitotically stable but B_2 is unstable in the germ line and also in the somatic lines. Coexistence of two types of B's, mitotically stable and unstable, is known in *Allium cernuum* (Grun, 1959) and *Lilium callosum* (Kayano, 1962). These indicate that the ability or the inability to undergo non-disjunction is primarily an inherent function of the type of B chromosomes. However, this function is affected by some factors within the cells. Thus, in *G. bicolor* the same B_2 's are variable in number within certain individuals but not within others (table 2); they are unstable in the germ line at an early stage of development but stable at

TABLE	7
-------	---

Correlation between frequency of intra-individual variation and mean number of B_2 's per follicle

Population	(I) Males with variable no. of B ₂ 's	(II) Total males with B ₂ 's	(I) (II)	Mean no. of B2's per follicle
Ot	8	22	0.364	1.37
Ks	12	19	0.632	1.77
Gs	24	34	0.706	2.96
$\mathbf{K}\mathbf{g}$	18	23	0.783	2.97

			Mean no										
	0B2	1B ₂	2B ₂	$3B_2$	4B ₂	5B2	$6B_2$	7B ₂	8B ₂	Total	of B_2 's		
% follicles in the males* % gametes pro-	7.7	23.1	17.1	20.5	14.6	3.7	5∙0	5.7	2.6	100.0	2.86		
duced by the males [†] Zygotes estimated	21·36 0·59	38·98 2·17	23·20 3·27	9·87 2·90	5·12 1·99	1∙16 1∙18	0∙26 0∙57	0∙05 0∙23	 0·10	100∙0 13∙0	2.85		
Males inferred from follicle types Males inferred from	1	3	3	2	2		1	1		13.0	2.77		
cells of G.C.	1	6	5	—	—	1			_	13.0	1.62		
				* †	Cf. tab Cf. tab	le 3. le 6.							

TABLE	8
-------	---

the f D is in 12 males from the Katel

TABLE 9 Frequency of sperms to be produced by 13 males shown in table 3

					Sperms	(%)				
Spermatocytes	0B2	1B ₂	2B ₂	3B2	4B ₂	$5B_2$	6B ₂	7B ₂	8B2	Total
0B.	7.700					_		_		7.70
1B.	11.550	11.550						_	_	23.10
		13.834							—)	
$2B_2 \downarrow 2I$	0.817	1.633	0.817	_		_	<u> </u>		j	► 17·10
λi III		0.103	0.103				_		- 1	
$3B_{\circ} \downarrow 1$ II + 1 I	_	5.658	5.658				_		_ }	> 20.50
31	1.122	3.367	3.367	1.122	_					
∕1 IV	—	0.010	0.010	0.010	—			_	1	
1 III+1 I		0.033	0.066	0.033					_	
4B ₂ < 2 II			5.548				—	_	- }	> 14.60
1 II + 2 I		1.697	3.394	1.697	_	_			- 1	
4 I	0.131	0.526	0.788	0.526	0.131				— J	
	_	0.004	0.009	0.009	0.004		—	—	— Ì	
1 III + 1 II			0.013	0.013	_			—	_	
1 III + 2 I		0.007	0.021	0.021	0.007				}	9 70
$3B_{2} \uparrow 2 II + 1 I$			0.701	0.701					(> 3.10
1 II + 3 I		0.184	0.551	0.551	0.184		—	_	- (
5 I	0.023	0.113	0.225	0.225	0.113	0.023		—	—]	
		0.004	0.016	0.024	0.016	0.004			— j	
3 11			—	0.825	_			—	- 1	
$6B_2 \lt 2 II + 2 I$	—		0.621	1.243	0.621		_		- }	- 5.00
1 II + 4 I		0.089	0.356	0.534	0.356	0.089			-	
61	0.003	0.019	0.047	0.062	0.047	0.019	0.003		— j	
∕ 3 II + 1 I		—	—	0.271	0.271			_	— Ì	
$\frac{1}{2}$ II + 3 I	<u> </u>		0.272	0.812	0.815	0.272		—	- {	5.70
$\frac{10_2}{111+51}$	_	0.068	0.339	0.679	0.679	0.339	0.068		- (- 5.70
7 I	0.006	0.045	0.134	0.223	0.223	0.134	0.045	0.006	— J	
on * ∫4 II	—	—			1.300		—		— J	2.60
^{ŏĎ} ² [™] Ĵ8I	0.005	0.041	0.142	0.284	0.356	0.284	0.142	0.041	0.005 ∫	- 2.00
Total	21.36	3 8·98	23.20	9.87	5.12	1.16	0.26	0.05		100.00

* Pairing configurations of B₂'s in spermatocytes of the follicles was not analysed.

later stages. In *Festuca pratensis* (Bosemark, 1956) the rate of mitotic nondisjunction of the B's in pollen grain is affected by interaction between the B's, and in *Lilium callosum* coexistence of the f_1 type of B's enhance the rate of non-disjunction of another type of B's, f_s (Kayano, 1962). In *G. bicolor* the frequency of males with varying number of B₂'s is higher in the population with higher mean number of B₂'s per follicle (table 7), suggesting that interaction between the B₂'s enhance the rate of their mitotic non-disjunction. The same type of interaction of B's has been reported in *Scilla scilloides* (Haga, 1961).

(ii) Difference in number of B_2 's between somatic and germ lines

Nur (1963) suggested originally that variation in the number of B's due to non-disjunction would be maintained in association with an accumulation mechanism. This is the case in *Camnula pellucida* (Nur, 1969) and *Locusta migratoria* (Nur, 1969; Kayano, 1971), in which the mean numbers of B's per primary spermatocyte were higher than the means per cell of the gastric caeca. In *G. bicolor*, however, mitotic instability of B_2 's in the germ line is not likely to be associated with an accumulation mechanism because increase and decrease of number of B_2 's tend to be balanced within the population and the mean number of B_2 's in the primary spermatocytes is very close to the mean of the estimated original zygotic number. Therefore, lower mean numbers of B_2 's per cell in the somatic line than in the germ line is very likely to indicate true elimination of B_2 's from the somatic line.

(iii) Difference between populations

In spite of different frequencies of B_1 's and B_2 's between populations of *G. bicolor* both types of the B's occur in all four localities, suggesting that the populations have descended from a common ancestral population but nowadays they are more or less isolated from one another (cf. Hewitt and John, 1970; Kayano, Sannomiya and Nakamura, 1970). Evans (1960) has reported that two populations of *Helix pomatia* are different in the frequency of individuals with B's (mitotically unstable) and the cause is ascribed to historical difference between the populations. In *Myrmeleotettix maculatus* climatic differences and differences in transmission rates between the populations affect equilibrium frequencies of B's (Hewitt and Brown, 1970; Hewitt, 1973). Some of these explanations may be applicable to the population differences in *G. bicolor*. However, another explanation is also possible that the population may be different for the genotypes affecting tolerance to any harmful effect of the B's (cf. Östergren, 1947).

Acknowledgments.—The writer wishes to express his sincere appreciation to Professor T. Haga, Department of Biology, Faculty of Science, Kyushu University, for his guidance and for his invaluable suggestions and criticisms in the preparation of the manuscript. The writer is indebted to Professor H. Kayano, Institute of Biology, Faculty of Liberal Arts, Nagasaki University, for helpful suggestions, and to Mr Koya Nakamura for co-operation in cytological handlings of the materials collected at Kashii.

6. References

BATTAGLIA, E. 1964. Cytogenetics of B-chromosomes. Caryologia, 17, 249-299.

BOSEMARK, N. O. 1956. On accessory chromosomes in *Festuca platensis*. III. Frequency and geographical distribution of plants with accessory chromosomes. *Hereditas*, 42, 189-210. EVANS, H. J. 1960. Supernumerary chromosomes in wild population in the snail *Helix bomatia* L. *Heredity*, 15, 129-138.

Plate I

(All figs. $\times 1000$)

Chromosomes of G. bicolor. Long and short arrows indicate B1 and B2, respectively.

- FIG. 1.—A cell of a gastric caecum from a female, $2n = 22 + XX + 1B_1 + 3B_2$.
- FIG. 2.—A cell of a gastric caecum from a male, $2n = 22 + XO + 2B_2$.
- FIG. 3.—A primary spermatocyte at diplotene, showing
 - $11 \text{ II} + X + 1 \text{ II} (B_1) + 1 \text{ II} + 5 \text{ I} (B_2).$
- FIGS. 4-7.—MI's of primary spermatocytes from different follicles of a male; 3B₂, 4B₂, 5B₂, and 7B₂, respectively.

X X *

- GRUN, P. 1959. Variability of accessory chromosomes in native populations of Allium cernuum. Amer. 7. Bot., 46, 218-224.
- HAGA, T. 1961. Intra-individual variation in number and linear patterning of the chromosomes. I. B-chromosomes in Rumex, Paris, and Scilla. Proc. Japan Acad., 37, 627-632.
- HEWITT, G. 1973. A variable transmission rates of B-chromosome in Myrmeleotettix maculatus (Thunb.) (Acrididae: Orthoptera). Chromosoma, 40, 83-106.

(Inunb.) (Actividae: Orthoptera). Chromosoma, 40, 85-106.
HEWITT, G. M., AND BROWN, M. F. 1970. The B-chromosome system of Myrmeleotettix maculatus.
V. A steep cline in East Anglia. Heredity, 25, 363-371.
HEWITT, G. M., AND JOHN, B. 1970. The B-chromosome system of Myrmeleotettix maculatus (Thunb.). IV. The dynamics. Evolution, 24, 169-180.
JOHN, B., AND LEWIS, K. R. 1968. The chromosome complement. Protoplasmatologia, 4.

Springer-Verlag.

KAYANO, H. 1962. Cytogenetic studies in Lilium callosum. IV. Transmission and multiplication of a small supernumerary B chromosomes. Evolution, 16, 86-89.

- KAYANO, H. 1971. Accumulation of B chromosomes in the germ line of Locusta migratoria. Heredity, 27, 119-123.
- KAYANO, H., SANNOMIYA, M., AND NAKAMURA, K. 1970. Cytogenetic studies on natural populations of Acrida lata. Heredity, 25, 113-122.

MÜNTZING, A. 1958. Accessory chromosomes. Trans. Bose Res. Inst. (Calcutta), 22, 1-15. MÜNTZING, A. 1966. Accessory chromosomes. Bull. Bot. Soc. Bengal, 20, 1-15.

- NEWCOMER, E. H. 1953. A new cytological and histological fixing fluid. Science, 118, 161. NUR, U. 1963. A mitotically unstable supernumerary chromosome with an accumulation mechanism in a grasshopper. Chromosoma, 14, 407-422.
- NUR, U. 1969. Mitotic instability leading to an accumulation of B-chromosomes in grasshoppers. Chromosoma, 27, 1-19.

ÖSTERGREN, G. 1947. Heterochromatic B-chromosome in Anthoxanthum. Hereditas, 33, 261-296.

RUTISHAUSER, A. 1960. Zur Genetik überzäliger Chromosomen. Arch. J. Klaus-Stift. Vererb. Sozial. Rass. (Zürich), 35, 440-458.

SANNOMIYA, M., AND KAYANO, H. 1969. Local variation and year-to-year change in frequencies of B-chromosomes in natural populations of two grasshopper species. Japan J. Genetics, 44, Suppl. 1, 84-92.

snow, R. 1963. Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Technol., 2, 116-117.

WHITE, M. J. D. 1954. Animal Cytology and Evolution, 2nd ed. Cambridge Univ. Press, Cambridge.

7. Appendix tables

Appendix table 1 Frequencies of B's in the Gs population of G. bicolor

N6	M. 1.			Nu	mber o	NI 6	N 6	Mean no. of					
B_1	no.	OB_2	$1B_2$	$2B_2$	3B ₂	4B ₂	5B ₂	6B ₂	9B ₂	13B ₂	folls.	cells	B_2 s per follicle
1	$\int 1$		5	_	_						5	169	1.00
	2		7		_				_		7	409	1.00
	3	_	7	1a	1	_					9	309	1.33
	4	_	1	2	1			_		_	4	32	2.00
	5	_	1	_	_		20	1	1	_	5	107	5.20
1	6	_		2				_	_		2	66	2.00
	7			1	_	_					1	27	2.00
	8	_	—	3						_	3	24	2.00
	9		—	6	1	_	_	_			7	264	2.14
	10		_	3	1			_			4	84	2.25
	11			3	1	1			_		5	125	2.60
	12	_		1	3	2		_	_		6	211	3.17
$0B_1$	13	_		2	4	1	1	_			8	95	3.13
	14			1		2	2	1	—	_	6	87	4.33
	15			1	2			2			5	117	4.00
	16	_		_	9			_			9	312	3.00
	17	_	_	_	1	_		_	—		1	32	3.00
	18	_	_		3	1		_			4	130	3 ⋅25
	19	_		_	2	3		_		_	5	77	3 ⋅60
	20				2	2				_	4	91	3 ⋅50
	21		_		1	6	1				8	126	4.00
	22	_			1	3		2			6	145	4.50
	23	_	_	—		7				_	7	94	4.00
	24					1			_		1	24	4.00
	25	_	_			1		2			3	87	5.33
(26	3				—					3	114	0.00
	27	—	2	3		—					5	117	1.60
	28	_	1	3		1		_			5	120	2.20
$1B_1 \prec$	29		—	4							4	150	2.00
-	30		—	2	—	1		—	—		3	96	2.67
	31			1		1			—	1	3	47	6.33
	32				5		1		—	_	6	134	3.33
	33			_			1	1		_	2	23	5.50
0.0	34	1	5	1		—					7	81	1.00
$2B_1$	35	_	—	2	2*			_			4	113	2.50
Total	—	4	29	42	40	33	8	9	1	1	167		Mean 2.96)
No. of		100		1005	1010	600		105		,		40.00	
cells		130	973	1087	1046	682	113	189	15	4		4239	

a, b Each indicates the follicle with variable number of B₂'s given in the text.
* Indicates inclusion of a follicle with variable number of B₁'s given in the text as case 1.

	Aı	PPEND	IX TABLE 2		
Frequencies	of B's	in the	Ks population	of G.	bicolor

				Num	ber of			Mean no. of				
No. of	Male					<u>ــــــــــــــــــــــــــــــــــــ</u>	_			No. of	No. of	B_2 's per
B_1	no.	$0B_2$	$1B_2$	$2B_2$	$3B_2$	$4B_2$	$5B_2$	$6B_2$	7B ₂	folls.	cells	follicle
1	$\left(1\right)$	1	6				_		_	7	101	0.86
	2	_	9	_						9	118	1.00
	3	_	6				_			6	91	1.00
	4		7				_	—		7	229	1.00
-	5		4			_		—		4	82	1.00
	6		5	2		_	_	_		7	205	1.29
$0B_1$	7		1	2			_			3	117	1.67
-	8		1	3			—		_	4	68	1.75
	9			7			—	—		7	163	2.00
	10			1	3	1	_			5	225	3.00
	11	_		6	1		1			8	279	2.50
	12			_	2	1	—	_		3	35	3.33
	13				1	2	2		1	6	161	4.67
	14	6	—			_	_	—	—	6	165	0.00
	15		4					—	—	4	78	1.00
$1B_1 \prec$	16		3			_			—	3	87	1.00
<u> </u>	17			1	3			_		4	27	2·7 5
	18	_		10	7	2			—	10	544	3.10
2B ₁	19		6	1						5	90	1.20
3B1	20	—	4	1*	—					5	46	1.20
Total	_	7	54	25	17	6	3		1	113		(Mean 1.77)
No. of		174	1149	619	600	201	61		91		2011	
cells		1/4	1142	013	033	201	01		<u> </u>	_	4311	

Indicates the follicle with variable number of B₂'s given in the text.
Indicates the follicle with variable number of B₁'s given in the text as case 2.

APPENDIX TABLE 3 Frequencies of B's in the Ot population of G. bicolor

NT C	34.1.		No o	of follicle	es with		NT C	N7 C	M	
B_1	no.	0B2	1B ₂	2B ₂	$3B_2$	4B ₂	folls.	No. of cells	per follicle	
1	(1)	4			_		4	193	0.00	
	2	3	_	→			3	84	0.00	
	3	4	_	_	_		4	134	0.00	
	4	6	_				6	172	0.00	
	5	2	_		_	_	2	72	0.00	
	6	1	—		_	_	1	39	0.00	
	7	3	_			_	3	163	0.00	
	8	<u> </u>	3		_	_	3	86	1.00	
ĺ	9	_	5	_			5	254	1.00	
	10	_	3		_		3	131	1.00	
	11		2	1	_	_	3	235	1.33	
ĺ	12		3	2	_		5	178	1.40	
$0B_1 \langle$	13	_	3	1			4	112	1.25	
ĺ	14	_	3	2			5	187	1.40	
[15		2	1	_		3	253	1.33	
Í	16		5	1		_	6	269	1.17	
	17			1		_	1	20	2.00	
	18		—	5		—	5	201	2.00	
	19	—		3	—		3	104	2.00	
1	20	—	—	7	\rightarrow	_	7	359	2.00	
	21		_	2			2	50	2.00	
	22		_	2	1		3	83	2.33	
	23	—	_	_	2		2	73	3.00	
	24	—			_	2	2	40	4.00	
Į	25	—	_		—	1	1	56	4.00	
ſ	26	—	2	—		—	2	.62	1.00	
1B J	27	—	2	—			2	124	1.00	
\mathbf{D}_1	28		1	1		—	2	39	1.50	
l	29		—	4	—		4	37	2.00	
Total		23	34	33	3	3	96		(Mean 1·37)	
No. of										
cells		857	1603	1164	90	96		3810	_	

B CHROMOSOMES OF GRASSHOPPERS

	Male no.	Number of follicles with [†]									N	Mean no. of
No. of B_1		0B2	$1B_2$	2B ₂	3B ₂	4B ₂	$5B_2$	6B ₂	$7B_2$	8B2	folls.	B_2 s per follicle
0B1 {	1*		1	5	2	1		_		_	9	2.33
	2		_	18	_		—				18	2.00
	3			3	3	4	2				12	3.42
	4		_	—	18	1	—				19	3 ⋅05
	5	_				7			_	—	7	4.00
	6				—	2		1			3	4.67
1	7*				—	_		1	5	3	9	7.22
1B ₁	8	19				—					19	0.00
	9*		10	_			—			-	10	1.00
	10*	_	20	_	—					—	20	1.00
	11	_	1	4	1			—	—	<u> </u>	6	2.00
	12*		4	8	4	2		_			18	2.22
	13*		10	2	1		2		—		15	1.80
	14*			10	1						11	2.09
	15*	_		2	8	1	—	—	—		11	2.91
	16*				14	—		<u> </u>			14	3.00
	17*				2	6	1	<u> </u>	—		9	3.98
	18*		_		2	14	1			—	17	3.94
1	19	—		—	2	10	1	—	—		13	3.92
2B1	20		1	6						—	7	1.86
	21			5	4	2					11	2.73
	22	_			3	6	1	3		—	13	4.31
	23		_			3	7	3			13	5.00
	24*			—		1	2	6	2		11	5.82
3B ₁	25*	12			—					—	12	0.00
Total		31	47	63	65	60	17	14	7	3	307	(Mean 2·97)

Appendix table 4 Frequencies of B's in the Kg population of G. bicolor

* Indicates 13 males given in table 3.
‡ Follicle type was determined by the observation of over 20 cells.