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SUMMARY

It is shown that an inverse power law adequately describes the dispersion of
airborne pollen over short distances. Two consequences of such a model are
that the range of gene flow is inversely proportional to the square root of the
population density, and that it is dependent upon spatial pattern; the range
of gene flow decreases as the average nearest neighbour distance decreases
with or without concomitant population density increase.

1. INTRODUCTION

ALTHOUGH a considerable amount has been published on dines, or the
balance between selection and gene flow, there are still conspicuous gaps in
our knowledge of the extent, and understanding of the properties of gene
flow in plant populations.

Gene flow has been measured directly by the use of marker genes in
spaced plant "garden" populations (Bateman, 1947; Griffiths, 1950;
Copeland and Hardin, 1970), and in sward populations (Copeland and
Hardin, 1970); and by measuring pollinator flight distances (Levin and
Kerster, 1969). These measurements show that, although pollen can be
blown hundreds of miles, and some insect pollinators (e.g. Apis meljfera)
frequently fly several miles, the bulk of cross-pollination occurs over very
short distances.

Gene flow may be down to about 5 per cent, within 10 metres in spaced
plant populations (Griffiths, 1950). Copeland and Hardin (1970), looking
at genetic contamination in continuous swards in seed grower fields of rye-
grass (using fluorescence as a marker), found that gene flow was negligible
6 metres from the border, and undetectable beyond 12 metres.

Gene flow has been estimated in natural populations, using those
situations in which two genetically distinct populations adjoin and there is
natural gene flow between them (parapatric populations), by comparing
offspring with their parents, either with respect to physiological characters
(such as tolerance to heavy metals) or with respect to morphological
characters (Aston and Bradshaw, 1966; McNeilly, 1968; Watson, 1969;
Snaydon, 1970). The effects of pollen dispersal have been shown to be
remarkably limited, except in situations where there is a marked polarisation
of wind direction (such as at Drws y Coed, where McNeilly found consider-
able gene flow over 150 metres).

Compared to our knowledge of the general extent of gene flow between
such populations, relatively little is known about the form of the curve which
describes the way in which the probability of two plants crossing decreases
with distance. Bateman (1950), analysing gene flow data, has demonstrated
that the curve is probably strongly leptokurtic. Levin and Kerster (1969)
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have shown that bee mediated pollen dispersal (and therefore gene flow) is
density dependent, and strongly leptokurtic.

Apart from the work of Bateman and of Levin and Kerster, I can find no
theoretical treatment of gene flow except in conjunction with drift (Wright,
1946; Malecot, 1962), or with selection.

Where there is interaction between selection and gene flow, gene frequency
dines result. Models of such climes fall into two categories.

(i) Mathematical models in which a function is sought which describes
the change in gene frequency with respect to distance. The method
used to find such a function is usually to set up an integral equation
which represents an equilibrium in which changes in gene frequency
due to migration are exactly balanced by changes due to selection,
for every point in a continuous population. Provided that the gene-
frequency/distance function (and its first derivative) is continuous
with respect to distance, the integral equation can be approximated
by a differential equation which can then be solved analytically
(Haldane, 1948), or numerically (Fisher, 1950; Hansen, 1966), for
different fitness regimes.

Because of the differential approximation, the probability density
function, f(s), which describes the distribution of migration dis-
tances, s, need never be stated explicitly. It need only be assumed
to fulfil certain mathematically expedient requirements, such as
symmetry about zero (odd moments zero), finity of all moments,
and continuity (one such distribution is the normal distribution); it
need only be characterised by its second moment (the mean square
of the dispersal distance), giving rise to the "diffusion approxima-
tion ". Slatkin (1973) has shown that the "diffusion approxima-
tion " is only valid for weak selection pressures. In cases of strong
selection, the detailed shape of f(s) becomes important and its
higher moments must be considered.

Downham (1973) has found direct numerical solutions to the
integral equation, using a normal distribution for f(s). He has
shown that discontinuities with respect to distance in the relative
fitness of the genotypes may give rise to discontinuities in the gene-
frequency/distance relationship. These discontinuities are smoothed
out by the "diffusion approximation ".

(ii) Numerical (computer simulation) models in which the interaction
between different gene dispersal functions and different dominance/
fitness regimes is investigated. Jam and Bradshaw (1966) used the
results of simulation in an attempt to decide whether, with different
dispersal functions, the extremely steep dines found between para-
patric plant populations, e.g. at the boundary of heavy metal mine
waste tips, could be expected. They concluded that with lepto-
kurtic pollen dispersal, steep dines were possible. This finding does
not conflict with that of Bateman (1950).

My own approach to the theory of gene frequency dines is to look at the
nature of gene flow, in the absence of selection, as a first step towards a fairly
realistic model. In this paper, I shall present a model of gene flow and some
of its implications for natural populations.
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2. THE MODEL

In the simplest "population" of two plants, the amount of pollen each
receives from the other can be expected to depend upon the distance between
them (i.e. p = f(x), where p is the amount of pollen received, and x is the
distance between the plants). One can easily expand this idea to a popula-
tion consisting of many plants with several genotypes. The amount of
pollen received by a plant (A) from each genotype is the sum of the values
off(x) corresponding to the distances between the plant (A) and each plant
of the genotype in question. It should be observed that it is the proportion
of each type of pollen which determines the genotypic frequencies among
the progeny, therefore the functionf(x) need only describe relative amounts
of pollen, not absolute amounts.

The model may be defined more formally as follows.
In a population of m plants containing w genotypes, the relative frequency

of pollen from the uth genotype which is available to the ith plant is:

u = A, v, A, = j, uJ(xi,j),

— ( if the jth plant is of genotype u
—

otherwise

where f(x, ) is the amount of pollen received by the ith plant from the
jth plant, i rj, andf(x) = 0 by definition.

In the computer, the position of each plant is defined by a pair of
rectangular co-ordinates. Hence the distance between any pair of plants
can be calculated by Pythagoras's theorem. For simplicity, each plant is
assumed to produce the same amount of pollen, and all plants are regarded
as being equally compatible to every other plant in the population, but
totally self-sterile.

3. THE CHOICE or f(x)

The distribution of wind-blown pollen from its source (averaged over a
flowering season) may be remarkably symmetrical (Griffiths, 1950; Raynor
and Ogden, 1965), or it may be considerably asymmetrical (McNeilly,
1968). For simplicity, I have chosen to model the symmetrical situation.
The most detailed observations on gene flow mediated by airborne pollen,
which are suitable for use in fitting a model of pollen dispersal are those of
Griffiths (1950).

The movements of airborne pollen may be described as eddy diffusion
with deposition. Gregory's (1945) general formula for this type of move-
ment has been expressed in simpler terms by Bateman (1947) as:

f(x) = x(') exp {— %x1_ia/(1 —d)} (1)
where x is distance, is a constant, and d is a measure of turbulence.

Since it is the most appropriate formula found, I have attempted to fit
it to Griffiths's results from experiment 3, 1948 (Griffiths 1950) (see fig. 1).
It also seemed worth while to use an empirical formula:

f(x) = x_k exp ( c) (2)
where x is distance, , c, and k are constants. Bateman's formula (1) is a
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special case of (2), as are the solutions to standard one, two, and three-
dimensional diffusion equations, and the continuous functions used by Jam
and Bradshaw (1966).

Fig. 1 shows the layout and sampling pattern of Griffiths's experiment
no. 3. Due to the symmetry of the model and the experiment, it was only
necessary to obtain simulation results for 24 plants in each of three rows in

TTTITITTTTTTTTTTITTTTTT TIITTITIIITIIITTTTTTTTTT

FIG. l.—Griffiths's experiment 3, 1948 (Griffiths, 1950). X denotes a white-based plant,
homozygous for a recessive allele c at one of the loci concerned with anthocyanin
production. * denotes a red-based plant, homozygous for the dominant allelomorph C.
The arrows mark the rows and columns sampled. The seed from the plants at the
intersection of the marked rows and columns was germinated, and the frequency of the
red-based phenotype scored. Distances are measured from the central block of red-
based plants.

one arm of the experiment. Computation time was cut down still further
by making use of the regularity of spacing.

The model was fitted by a numerical maximisation of
L = nE[p0 ln (Pe) + (1 —p0) ln (1 Pe)J,

the logarithm of the likelihood function; n is the number of seeds counted
per datum point (—400 x 12 = 4800, Griffiths, personal communication),
p0 is the observed frequency of red-based seedlings, and Pe is that expected
under the model.

Neither of the formulae (1) or (2) would give best fit with oc>0. Nega-
tive values of lead to f(x) going through a minimum as x increases from
zero, and then increasing as x—*. The best realistic fit was given with

= 0, d = l6694 in formula (1), which then reduces to f(x) l/xk,

k = I P8347. The standard error of Ic (estimated by v'17i, ' = was

000627. As can be seen in fig. 2, the fitted line does show the general trend
among the points. However, the likelihood ratio test gives the highly signi-
ficant value of chi-squared of 360063, on 23 degrees of freedom (only one
parameter estimated). It can be shown that no smooth curve of the type
likely to be given by a pollen dispersal model will fit the data. In a crude
and simple test, a smooth curve was fitted by eye in such a way that the
trend (rather than any irregularity) was followed. A chi-squ are of 1 275,
obtained from a likelihood ratio test, would be highly significant even if
23 degrees of freedom were allowed (i.e. even if only one "parameter" had
been fitted in the smoothing of the data).

In view of the above results, it is suggested that in addition to the binomial
sampling errors, there are other sources of variability about the expected
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frequencies, two of which are fairly obvious. Firstly, there will almost
certainly be differences between plants with respect to both number of
florets and flowering time. If these differences are at least partly environ-
mental in origin, they may be correlated with position. Secondly, a process
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FIG. 2.—Frequency polygon of the best fit (fx) = l/x"8347) of the model of Griffiths's
experiment 3. The data points (X) are the average of the east and West arms.

based on eddy diffusion cannot be expected to behave in a deterministic
manner over a time period as short as the flowering season; the standard
deviation of flowering time for Lolium perenne is 64 days (calculated from
table 6, Griffiths, 1950).

Gregory (1945) maintains that deposition plays little part in determining
the form of dispersion of airborne spores. Hence it may be argued that, if
spores remain airborne for a considerable time, the mean square distance of
dispersal may be very large (in comparison to the scale of Griffiths's experi-
ment), and so the constant, , of formula (1) (which is proportional to the
deposition rate, and inversely proportional to the mean square dispersal
distance) might be expected to be vanishingly small. Thus

exp {—x14d/(l —d)} 1

.4,

.3.
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over the distances considered. The value of d = 1.6694 of formula (1) is
within the range of l24-2O contemplated by Sutton (1932) and Gregory
(1945). Fig. 2 shows Griffiths's data (average of East and West arms) and
the best fit of the model. It seems adequate for our purposes.

4. THE EFFECTS OF DEN5ITY

The constant k inf(x) = l/x" is unitless. Hence in the simulation of any
situation analogous to Griffiths's experiment, the units of distance are purely
arbitrary; one achieves the same result whatever units of distance are used.
The converse is also true; a graph of the relative frequency of red-based
progeny against row number is unaffected by a change in the spacing of the

(a) (b) (c)

FIG. 3.—280 cm. sided square populations of 225 spaced plants. (a) No aggregation, 20 cm.
spacing. (b) 10 cm. spacing within aggregations. (c) 5 cm. spacing within aggregations.

plants (nearest neighbour distance). Therefore the 5 per cent, range of gene
flow (the distance from the boundary within which gene flow is greater than
5 per cent.) is proportional to the nearest neighbour distance.

One might predict that, had Griffiths used 305 cm. spacing instead of
71 cm., he would have found a 5 per cent. range of gene flow of 5 metres
instead of 10 metres. There is the proviso that the plants must be small with
respect to the inter-plant distances; this is discussed later.

With regard to natural populations, one can infer from the above pro-
position that the range of gene flow (as defined above) is proportional to the
average nearest neighbour distance. For a population in which the plants
are uniformly distributed at random, the expectation of nearest neighbour
distance (r) is given by:

E(r) = l/(2\/),
where p is the population density (Clarke and Evans, 1954).

In natural populations, one might expect average nearest neighbour
distance to be approximately inversely proportional to the square root of the
population density.

Crude evidence for this density effect is to be found by comparison of
Griffiths's spaced plant results with those of Copeland and Hardin (1970)
from continuous swards. Both used species of Lolium. At distances beyond
which gene flow was undetectable in continuous swards (12 metres), Griffiths
was still getting 4 or 5 per cent, red-based progeny.
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5 TuE ErFEcT5 OF AGGREGATION

Random and regular distributions of plants are rare (Greig-Smith, 1964),
but most models of dines apply strictly only to these. r have therefore
investigated the effect on the amount of gene flow, of imposing aggregation
on a regular or random distribution.

The model populations (fig. 3, a, b and c) take the form of square areas
containing plants of one genotype, with and without aggregation, on to
which falls a background rain of exogenous pollen. The source of exogenous
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(a)

FIG. 4.—Frequencies of "within population fertilisation" for plants along the diagonal
transect (from one corner at 0 cm. to the centre at 198 (280/V2) cm.) for different levels
of background rain (OOO5 to O2 relative units). Figs. a, b and c correspond to figs. 3a,
35 and 3c respective'y.
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pollen is assumed to be at a considerable distance from the population, that
is, each plant receives the same amount. The amount of endogenous pollen
received by each plant is the sum of all the values of f(x) corresponding to
the distances between each plant and every other plant in the population.
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Fio. 4b

A relative unit of background rain is equal to f(l), that is the relative amount
of pollen that a plant would receive from another which was one unit of
distance (e.g. one centimetre) away.

It can be seen from fig. 4, a, b and c, that more endogenous pollen is
available to those plants at the centre of a group (either at the population, or
the aggregation level), so that a smaller proportion of the pollen they receive
is exogenous. Fig. 5 summarises the effect of imposing aggregation onto a
regular distribution of plants, both of the mean frequency of "within
populations fertilisation ", and on the frequency along the diagonal transects.
Fig. 6, which shows the effect of increasing the number of plants within a
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square area, has been included for comparison. The effect of halving the
interplant distances within an aggregation (containing a constant number of
plants) is approximately the same as that of doubling the number of plants
in the population.

L
I.'-

FIG. 4c

Results from simulation have shown that there is less gene flow into
populations in which the plants are randomly distributed than into those in
which plants are regularly spaced. With a background rain of 0.04 relative
units, the average frequency of" within populations fertilisation " in square
populations (225 plants in an area of 280 x 280 sq. cm.) was O602 for a
regularly spaced population (fig. 3, a), and about 0.70 for randomly distri-
buted populations. This result is not unexpected, as the average nearest
neighbour distance (in populations of fixed density) is less for one with a
random distribution than it is for one with a regular distribution (Clark and

1'O•

.9.

005
•01

1•1

[2

•1

Distance along diagonal (cm)

GENE FLOW 363

square area, has been included for comparison. The effect of halving the
interplant distances within an aggregation (containing a constant number of
plants) is approximately the same as that of doubling the number of plants
in the population.

L
I.'-

FIG. 4c

Results from simulation have shown that there is less gene flow into
populations in which the plants are randomly distributed than into those in
which plants are regularly spaced. With a background rain of 0.04 relative
units, the average frequency of" within populations fertilisation " in square
populations (225 plants in an area of 280 x 280 sq. cm.) was O602 for a
regularly spaced population (fig. 3, a), and about 0.70 for randomly distri-
buted populations. This result is not unexpected, as the average nearest
neighbour distance (in populations of fixed density) is less for one with a
random distribution than it is for one with a regular distribution (Clark and

1'O•

.9.

005
•01

1•1

[2

•1

Distance along diagonal (cm)



364 J. T. GLEAVES

U
C

0•
I-

U-

Fic. 5.—Comparison of" within population fertilisation "frequencies with different degrees
of aggregation, for a background rain of O• 1 relative units. The numbers on the right.
hand side of the lines are the averages (Over all 225 plants) of the "within population
fertilisation" frequencies.

In general, gene flow into an area decreases as the average nearest
neighbour distance (within that area) decreases, whether this be due to an
increase in clumping, or to a general increase in population density.

6. DiscussioN

One f the less realistic features of the model presented here is the
representation of plants by points in two-dimensional space. The effect of

Evans, 1954). If clumping is imposed on a random distribution, there is still
less gene flow than into populations in which clumping is absent.
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finite plant size is to decrease the effective inter-plant distances from x to
x —b, where b is a function of plant size, and x is the distance between the
centres of two plants. The shorter the inter-plant distance, the greater the
effect of plant size on the amount of pollen flow between two plants. There-
fore, representation of plants as points will tend to overestimate the range of

FIG. 6.—The effect on the average " within popuIaton fertilisation "frequency of increasing
the number of plants within a regularly spaced, 280 cm. sided, square population, at
different levels (0.005 to 02 relative units) of background rain.

gene flow, and the larger are the plants in proportion to the inter-plant
distances, the greater the overestimate will be. In consequence, the effects
of density and aggregation may have been underestimated However, the
situation is further complicated because plant size may be affected by the
competitive effects arising from nearest neighbour distance.
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Jam and Bradshaw (1966) found that in some cases, dines were steeper
than would be suggested theoretically. They felt that, either selection must
be stronger than estimated, or that gene flow was restricted in ways not
appreciated. It should be noted that they based their range of gene flow
on that reported by Griffiths (1950), assuming that this range was not
dependent upon population density or pattern. In fact, Griffiths used
regularly spaced plants at very low density. In the natural situations which
Jam and Bradshaw examined, densities are likely to be much higher, and
distributions certainly not regular. In the light of the present investigation,
one might expect gene flow to be more restricted than previously envisaged.
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