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1. INTRODUCTION

IN a previous investigation (Gale and Arthur, 1972), an attempt was made
to estimate genetic correlations between ten characters, taken in pairs, in
Papaver dubium. Plants were raised from seed collected from six natural
populations. From every population, a number of pairs of plants were
chosen at random and plants comprising a pair crossed to one another to
give a single family. In all, 18 families were raised, a family consisting of
four plants. In order to minimise the effects of environmentally induced
variation and covariation, correlations were calculated on family means.
From these correlations, it was apparent that five of the characters fell into
three independent groups. The remaining characters showed significant
intermediate sized correlations with the members of more than one group.
It was concluded that there were at least three independent sets of loci
controlling these characters. Characters correlated with members of more
than one group are presumably controlled by loci from more than one set.
We may note that this procedure depends on the assumption that the corre-
lation coefficient gives an adequate summary of the relationship between any
two of our characters; we shall discuss this point in more detail below.

Now nine of the ten characters showed significant genetical variation
within populations, these nine falling into the three separate groups described
above. It follows that three different polymorphisms have been detected in
these populations. However, the number of families per population was
small, so that it was not possible to decide how many of these polymorphisms
existed in a given population. Accordingly, it was decided to make a more
detailed study of a single population, with a view to making a minimum
estimate of the number of independent polymorphisms in that population.
The general procedure was the same as in the earlier experiment, but
incorporated two improvements.

Firstly, the number of plants per family was increased to 20. This large
family size seems essential, at least in the case of poppies, if really accurate
results are to be obtained. In detail, the estimated variance of family means
for any given character, has expected value

cr + . cr
where

= population variance of true family means
= population average variance within families

K = family size.
Analogous expressions hold for estimated covariances of family means for a
pair of characters; the expected value has the same form but with population
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variances replaced by covariances. Hence, if the family size is sufficiently
large, the contribution of within family variation and covariation, which is
partly environmental, to our correlation coefficient, calculated on family
means, will be negligible. Our coefficient is thus an estimate of correlation
which is purely genetic in origin; we may refer to this as a genetic correlation
coefficient, although this term is more strictly used for the correlation
between breeding values (see e.g. Falconer, 1960).

As an alternative to the use of large families, we might attempt to esti-
mate within family variances and covariances. These estimates are then
divided by the family size and subtracted from the appropriate variances
and covariances of family means. Correlations are then calculated from
these adjusted estimates (Mode and Robinson, 1959). The efficacy of this
procedure will depend to some extent on the relative sizes of between and
within family components. In the case of poppies, the procedure fails if
family sizes are small, since the estimates have very large sampling errors.
This may be shown as follows. While the true correlations cannot, of course,
exceed unity in absolute value, no such restraint applies to their estimates
since these are not obtained, in this procedure, directly from paired compari-
Sons and are not therefore subject to the restrictions imposed by Cauchy's
inequality. In a sense, this is fortunate, since we can obtain an idea of
sampling error from the frequency of occurrence of" impossible "estimates.
In practice, estimates as large as three in absolute value are quite common
(Ooi and Arthur, personal communication).

Given then that we have decided to raise large families, the adjustments
to variances and covariances just described may still be made, although there
are disadvantages in doing this. As far as we are aware, little is known of the
probability distribution of the resulting estimates of correlation, apart from
their variances. Thus the estimates do not lead to any tests of significance.
Accordingly, it seems best to raise families sufficiently large for estimates of
correlation calculated on unadjusted estimates to differ very little from those
calculated from adjusted estimates. The adjustments are then unnecessary
and we thus have the usual estimated correlation coefficient with well-known
properties. With families of size 30, the difference between the two types of
estimate turned out to be trifling, for all five characters measured in 1970
(Bassi, personal communication). As we shall show, for families of size 20,
the difference is still trivial.

A second improvement was in the procedure used to allocate characters
to groups. While characters showing near-zero genetic correlation inter se
are readily allocated to different groups, characters under the control of
genes belonging to more than one set (i.e. characters belonging to two or
more groups) are difficult to assign. Further, it is difficult to decide, in the
case of a character showing genetic correlation with other characters,
whether there is any variation present specific to that character or whether
all variation in that character is necessarily associated with variation in
others. For these reasons, we have used the technique of factor analysis in
order to obtain a more objective picture of the relationship between our
characters.

2. MATERIALS AND METHODS

The plants used were derived from an experimental population set up
for another purpose in 1964. A previously grassed-over plot, measuring
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30 x 4 feet was cleared. About 100,000 seeds from 100 plants growing on the
University campus at a distance of 300-400 yards from the plot were scattered
on the plot (Lawrence, personal communication). Since that time, the
population was maintained by self-seeding and weeding was kept to the
absolute minimum necessary to prevent poppies from being crowded out.
Thus we are dealing here with a derivative of the University campus popula-
tion mentioned in the earlier paper, maintained in close proximity to the
parent population.

In 1968, it was decided to set up a number of inbred lines, starting with
plants growing on the plot. Accordingly, 20 randomly chosen plants were
selfed and progeny grown on the experimental field in 1969. The lines were
maintained by further selfings in 1969 and 1970, thus giving rise to 20 families,
each derived from a single wild plant. These families were raised, on the
experimental field, in 1971, 20 plants being grown per family, thus giving
400 plants in all, these being the material of the present study.

It was intended, as far as possible, to measure the same ten characters as
on the previous occasion. However, it proved impossible to measure three
of these, namely juvenile elevation, leaf number at flowering time and
diameter at flowering time, under field conditions. For example, the number
of leaves at flowering time exceeded 300 in some plants and it became
apparent that it would be necessary to pull the plant to pieces in order to
obtain an accurate count.

In the earlier study, juvenile characters were measured at both 7 weeks
and 8 weeks after sowing. However, since performance at these two times
was very similar, we have confined ourselves to measurements at 7 weeks
only. These were made immediately before planting. On the other hand,
results obtained in 1967 suggested that the pattern of correlations obtained
at 10 weeks, or so, was rather different from that at 7 weeks (Arthur, personal
communication). To some extent this might be expected, at least for corre-
lations involving juvenile height. For the height at about 7 weeks in fact
represents the height of the outermost leaves, which gradually become less
elevated as the plant develops further and lie almost flat at about 10 weeks.
At this latter period, the highest leaves are those in the crown, which is
beginning to elongate at this time. Since at 10 weeks this elongation is not
very advanced in some plants, we have the paradoxical result that, in some
cases, height at 10 weeks is considerably less than height 3 weeks earlier.
We concluded, therefore, that measurements at both 7 and 10 weeks were
desirable. These measurements, of leaf number, height and diameter, will
be denoted LN7, H7, D7 and LN1O, Hl0, DlO for the two occasions of
measurement respectively.

We now turn to measurements made at flowering time. Here we were
faced with a tiresome problem, in that, on many plants, first and sometimes
second flowers had been removed, in the bud stage, by birds. However, the
third flower is easily recognised as such and we decided, therefore, to score
flowering time (FT) as the time of opening of the third flower. Humphreys
(personal communication) has found, in plants raised from seed collected
from two natural populations, that time of opening of the first and third
flowers show a correlation of over O9 inter se and that the correlations of time
of opening of third flower with other characters are closely similar to the
corresponding correlations obtained for the first flower. Thus our results
should be comparable with earlier results obtained by scoring the first
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flower. Other characters scored at flowering time were plant height (HF),
anther number in the third flower (AF) and number of buds (BF).

Finally, we also scored two characters first studied by Lawrence (1972),
namely number of stigmatic rays (SR), which in our case was the total
number of rays on the gynaecia of the third, fourth and fifth flowers to open,
and also capsule number (CN).

3. ESTIMATED CORRELATION COEFFICIENTS

Estimated between family (81) and within family (6,) components of
variation are given in table I. All between family components are significant
at the 01 per cent, level. For the purposes of comparison, we include
estimates of 4 obtained in the earlier study.

TABLE 1

Components of variation

Character â, 4 4 (previous study)
LN7 1'8 1•4 15
H7 1532 38•3 294
D7 442'3 1067 188'7
LN1O 163 18'! —
H10 1532 355'2 —
D10 933.4 8124 —
FT 6'7 13'9 626
HF 3604'Q 2787'4 23300
AF 159'l 131'7 115'O
BF 51'O 421 0'O
SR 1'7 0•5 —
CN 684'l 129'2 —

4 = between family component.
= within family component.

In view of the large sampling errors associated with these estimates, the
agreement between values for 4 for the two experiments are surprisingly
good, particularly since measurements were made under very different
conditions. Certainly, discrepancies as large as this have been found when
seed from a group of families was raised in two blocks sown 1 week apart,
every family appearing in both blocks, and comparisons were made between
estimated components calculated for the two blocks separately (Gale and
Arthur, 1972). Tentatively, then, we may conclude that, for most characters,
the genetic variance in our population is similar to the average genetic
variance for our previous six populations taken together. In this sense, our
population is a "typical" one. On the other hand, the low variance for
flowering time in the population under study probably represents a real
departure from the situation in the other five populations, since we have
other evidence suggesting this. The other obvious discrepancy, in number
of buds at flowering time, may represent a real difference between popula-
tions or, alternatively, either some form of genotype-environmental inter-
action or simply a reflection of the different methods by which flowering
time was scored in the different experiments.

We turn now to the estimated correlations between characters. In
table 2, we give the "raw" genetic correlations, that is, the correlations
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calculated directly on family means. In table 3 are given the "adjusted "
genetic correlations, that is correlations adjusted to allow for within family
variances and covariances, as discussed in section 1.

It will be seen that the adjusted estimates differ little from the raw
estimates in any individual case, although in general adjusted estimates are
slightly larger in absolute value than the raw estimates. This happens

TABLE 2

Correlations calculated on family means

LN7 H7 D7 LN1O H10 D10 FT HF AF BF SR CN
LN7 —0•07 001 022 —0•18 —012 032 —022 —010 068 —026 053
H7 060 037 063 062 —052 —0•37 —016 —0•46 —0•12 013
D7 034 0•60 057 —052 —0•25 —005 —026 —0•02 —003
LNIO 075 076 —061 —059 —054 —013 —019 0'28
H10 090 —078 —049 —0•43 —044 —0•07 0•01
D10 —084 —058 —034 —0'43 —003 0•19
FT 073 0•27 070 0'02 000
HF 0•38 042 034 —046
AF 013 071 —0•18
BF 0•02 018
SR —040
CN

because within family correlations are usually low. It does not necessarily
follow from this that environmental correlations are low, since the within
family correlations will be depressed by the effects of errors of measurement,
which should, in general, be uncorrelated.

When scatter diagrams for family means of characters taken in pairs were
plotted, it became apparent that the relationship, if any, between a pair of

TABLE 3

Correlations adjusted for within family effects

LN7 H7 D7 LNIO H10 D10 FT HF AF BF SR CN
LN7 —008 —006 022 —0•18 —014 0•34 —0•22 —0'll 0•72 —028 0•60
H7 0•70 041 068 068 —0•58 —043 —0•19 —052 —015 014
D7 036 066 0•62 —0.57 —028 —005 —0.30 —002 —005
LNIO 077 078 —062 —0•62 —0•57 —0•14 —020 0•32
H1O 093 —080 —0•51 —045 —046 —008 002
D10 —087 —062 —037 —0•46 —004 0•20
FT 075 0•28 0•71 002 001
HF 0•39 042 0•36 —0•54
AF 0•13 O•76 —021
BF 002 018
SR —049
CN

characters was essentially linear. That is, although occasionally a line
showing a small degree of curvilinearity would give a slightly better fit than
a straight line, no cases were found where the line was U-shaped. Thus, in
the present case, the genetic correlation coefficient gives a reliable indication
of the degree of relationship between genotypic values for a pair of characters.

However, it does not follow from this that if two characters, say X and T
are under the control of exactly the same set of genes, the genetic correlation
between them will be unity, even in the absence of sampling error. Indeed,
in principle, the correlation could be zero (Falconer, 1960). Consider, for

KZ
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example, the following very special case. Suppose both characters are
controlled by genes at n loci, with two alleles per locus and that allele fre-
quencies at each locus are . Suppose further that at half the loci, the
increasing allele for X is also the increasing allele for 1, whereas, at the other
loci, the increasing allele for X is the decreasing allele for 2". If the effect of
any gene substitution is to alter X or 7, either upwards or downwards, by
one unit and gene action is additive, a zero correlation will result.

This special case illustrates a general point, namely that if two characters
are controlled by the same set of genes, a zero correlation will result only if
there is a nice adjustment between effects of gene substitutions and gene
frequencies. This is not very helpful, however, because even if the adjust-
ment is not very precise, a lowish correlation could still be found in some
cases. Thus, if we wish to interpret a low correlation between X and 2" as
implying that these two characters are, in the main, under the control of
separate sets of loci, we shall have to make some assumption about the loci
concerned. We shall make the following "postulate of consistency of gene
action" for the case where X and I are under the control of the same set of
genes. We postulate that, at most loci having a substantial effect on the two
characters either (1) increasing (decreasing) alleles for X are consistently
increasing (decreasing) alleles for I at the loci under consideration or (2)
increasing (decreasing) alleles for X are consistently decreasing (increasing)
alleles for I at the Joci under consideration.

However, even given this postulate, the correlation could still be some
way from unity. For whereas we have supposed a consistency over loci with
regard to the direction of gene effects, it would be quite wrong to assume
further a consistency in magnitude of effect. If, then, we plot a scatter diagram
of genotypic values of X and I, the points will not usually be on a straight
line but will give the usual elliptical pattern, even in the absence of sampling
error, giving rise to a correlation of intermediate size.

To sum up, a high correlation indicates pleiotropic effects of one set of
loci or perhaps linkage between two independent sets. A very low correlation
indicates two separate sets of loci controlling the characters at some stage,
provided the consistency postulate is applicable. An intermediate correlation
is difficult to interpret; it may indicate the pleiotropic effect of one set of loci
or linkage between two sets of loci or one set of loci controlling both characters
in conjunction with two other independent sets, one for each character.

We shall assume that the consistency postulate is appropriate but will
make no other assumptions. We are thus following the approach tacitly
assumed in the earlier paper; if the correlation between a pair of characters
is very low, we shall conclude that these characters are controlled by two
distinct sets of loci. If a pair of characters show an intermediate or high
correlation inter Se, we shall regard them as controlled by the same set of loci.
Thus we shall obtain a minimum estimate of the number of sets of loci con-
trolling our characters, that is, a minimum estimate of the number of poly-
morphisms present in our original population. Our estimate may, of course,
be reduced by the effects of linkage between loci which in fact belong to
distinct sets.

As explained above, we shall attempt to separate our characters into
groups, each group representing a distinct set of loci, by means of factor
analysis. As this procedure has not been widely used in genetical problems
it may be helpful to give an account of the method and of the computations
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required. A helpful account of basic notions is given in Morrison (1967).
A comprehensive survey of the field, and in particular of recent develop-
ments, will be found in Lawley and Maxwell (1971).

4. FACTOR ANALYSIS: PROCEDURE

Suppose we have investigated the variation in p characters. In most
experiments, a "character" will be a measurement that varies from one
individual to another. In the present context, however, a "character" is
the family mean for a given measurement, this mean varying from one family
to another. In general, the variation in a given character, say X will be
accompanied, to some extent, by correlated variation in one or more other
characters. In that the true correlations between Xand these other characters
will normally be less than unity in absolute value, we may regard the varia-
tion in X as made up of two parts, namely the variation which is associated
with variation in other characters ("common variation ") and variation
which is independent of variation in other characters (" specific variation ").
Let us suppose, then, that the specific variation has been calculated for every
character. We are left with all variation which is common to two or more
characters. Generally, not all characters will show common variation with
each other; for example, a character X may show common variation with a
character T but not with a character Z. The latter, however, may show
common variation with some other characters, say A and B. Thus we are
led to the idea of accounting for all the common variation in terms of
variation in Ic underlying uncorrelated factors. Let X1, X2, ..., X, be the
values of the various characters in some "individual"; in the present case,
an "individual "is an individual family. The X's vary from "individual"
to "individual", thus giving rise to the usual mean and standard deviation of
any X. Similarly, we regard the factors as varying in the same way; factors
are defined so that each has variance unity. Finally, we have the specific
variation for every character, measured by the " specific variance "for that
character; in many cases, this turns out to be zero, as we shall discuss later.

Letfr be the rth factor. We postulate the linear model

X1 = A1f1+ A12f2 + ... + A jkf/c + C1

(1)
Xp = A1j+A2f2+... +Apkf/+Cp.

Here the A's are unknown constants and the e's represent specific variation
e.g. e1 represents the difference between the actual value of X1 and the value
predicted from the factors. The specific variance for the ith character is
defined as

= var (ej). (2)

If the X's are standardised (i.e. each is measured from its mean and divided
by its standard deviation), then the A's become correlation coefficients
between characters and factors, e.g. Asm is the correlation between the sth
character and the rnth factor; it is called the loading of this character on this
factor.

In matrix notation, we may write (1) as

X = Jlf+e. (3)
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Then it follows that the covariance matrix of the X's is

(4)

where is a diagonal matrix, with diagonal elements , ..., If
the X's are standardised, E is the correlation matrix of the X's. If, as is often
the case, different characters are measured in different units, their correlation
matrix is the natural starting point for the analysis. Fortunately, most of
the calculations are the same, whether we start with covariances or with
correlations. We shall, for simplicity, suppose that we start with the correla-
tion matrix.

We should like to know (1) the number of factors (2) the specific variances
and (3) the loadings. Now it turns out that if we postulate that there are
k factors, we can estimate the elements of Ji/l' and of by maximum likeli-
hood. Thus we can obtain predicted values for all the elements of '. Of
course Z is unknown; we actually have S the observed correlation matrix.
We therefore test whether the elements of S, taken together, differ signifi-
cantly from the corresponding elements of the predicted . '. If there is a
significant difference, our value of k is incorrect. The procedure, therefore,
is to start with k = 1 and test the departure of S from the predicted Z; if
this is significant, we take k = 2 and repeat the procedure. We continue
in this way, augmenting Ic by unity, until such time as the difference between
S and predicted I is not significant. If, however, we have some prior reason
(e.g. previous experience with the characters concerned) for expecting k to
take some particular value, it would usually be best to start with that value.

Thus the number of factors and the specific variances can be estimated.
However, the loadings cannot be found unless we make further assumptions.
Let T by any orthogonal matrix, that is, a matrix such that TT' is the unit
matrix. Consider a set of loadings A and multiply A by T to obtain new
loadings AT. These have the property

(AT)(AT)' = ATT'A' = AA'. (5)

Thus the new loadings give the same All' as the old and therefore predict
I just as well (or badly). Our choice of loadings is, therefore, in the first
instance, arbitrary; any will do, provided they give the right AA', which is
all we require for estimating number of factors and the specific variances.
Now it may be shown that among all the appropriate A, there must be a A
satisfying

A'1S1A a diagonal matrix. (6)

This condition was introduced by Lawley (1940). In practice, some condi-
tion is required, since we have to estimate the A in order to estimate the AA'.
It should be emphasised that this condition has no biological meaning and
attempts to interpret the A obtained subject to this condition are usually
pointless (but see below).

We turn now to the actual process of maximum likelihood estimation.
We should emphasise that this must be done on the raw correlations.
Exaggerated rounding off of the latter leads to difficulties; it is best, in the
case of correlation matrices, not to round off the original values to less than
three decimal places. We have, in fact, retained four places in the computa-
tions to be described later.
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Let L be the logarithm of the likelihood, apart from an additive constant.
We wish to maximise L, for variations in the 1' and in the A, subject, of
course, to (6). Equations which the maximum likelihood estimates must
satisfy were first given by Lawley (1940). However, it became apparent
that these equations did not lead to a satisfactory procedure for calculating
the estimates. Recently, however, new procedures have been proposed
(,Joreskog, 1967; Joreskog and Lawley, 1968; Clarke, 1970), which are very
satisfactory.

It proves convenient to minimise

F(A, tJ') = — EL—log Sj p (7)

where n is the number of" individuals" observed, minus one; as before S is
the observed correlation (or covariance) matrix with determinant I S I and
p is the number of characters. Since n,

I
and p are all constants, the

values of A and which maxirnise L will also minimise F(A, P').
Suppose first that the l' are given. Consider the matrix

with latent roots, in descending order of magnitude

0, °2,
and corresponding latent column vectors

W1, W2, ..., Wp.

Let WjJ be the element in the ith row of w9 and let the vectors be stan-
dardised so that, for anyj,

w2=l. (8)

Then (Joreskog, 1967) the maximum likelihood estimates of the A,
conditional on the given !P, are readily found. To do this, we consider the
k largest latent roots and construct a matrix 0 with 0, 02, ..., on the
leading diagonal and zero elsewhere. We further construct a matrix Q, of
which the first column is w1, the second column w2 and so on, the last column
being wk. Joreskog then shows that A, the estimates of the A conditional
on the given !1, are given by

A = tJQ(O—I) (9)

where I is the unit matrix.
It turns out that, if we substitute the given and our conditional

estimates A into F(A, as given by (7), we obtain

f(1") = [O—logO—l] (10)j k+1
this being the minimum value of F(A, P), conditional on the given

In order then to obtain maximum likelihood estimates of the t' we must
minimise f(1) for variations in the Once these maximum likelihood
estimates of the P' have been obtained, the true maximum likelihood esti-
mates of the A can be found from (9). The values of which minimise
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f(1f) can be found numerically using the Newton-Raphson method, for
which appropriate formulae have been developed by Clarke (1970). This
method is probably the most rapid available, in cases where the number of
characters is not too large (Lawley and Maxwell, 1971). The Newton-
Raphson method, when used in maximum likelihood estimation, is known
in the genetical literature as Fisher's scoring method (see e.g. Mather, 1951;
Bailey, 1961) and it may be helpful to use Fisher's terminology here, provided
it is understood that by "score" we mean maximum likelihood score (and
not factor score).

For convenience, we shall write f as short for f(1"). Then it may be
shown (Joreskog, 1967; Clarke, 1970) thatf 'p

(I—Oj)w2j. (11)
vI

With the same notation as before, let

= !1f—(I-QQ')1'--+. (12)

If is the element in the ith row, lth column of ck it may be shown
(Clarke, 1970 and personal communication) that

____ 2 26jaffin = = —

+
——- WrWir]

(13)
1 r k+i 7 5

where = 1 if i = 1 and zero otherwise.
Now let be a vector of trial values for the maximum likelihood

estimates of the F. Appropriate values are given by

1 —k/(2p)
(14)

(Joreskog, 1963), where s is the ith diagonal element in S—'. Let q
and /3jj be evaluated using these trial values. Denote the column vector with
f/b in its ith row as T, the matrix with qS in its ith row, lth column as G
and the matrix with 19n in its ith row, lth column as J, all elements being
evaluated at the trial values given by (14). Then in Fisher's terminology,
the matrix of scores is

-
and the (approximate) matrix of information realised is

whence an improved set of estimates, say !l"(l), is given, in the usual way by

i) = I(0) —JT (15)

with one important proviso, that J, as evaluated, shall be a positive definite
matrix (if so, all its latent roots will be positive). Whereas if J is evaluated
using the true maximum likelihood estimates of the F, it must be positive
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definite, this will not necessarily hold for trial estimates some distance from
the true estimates. However, this difficulty is easily overcome (Clarke,
1970); if J is not positive definite, G—1 is substituted for J' in (15), since G
is always positive definite.

Once improved estimates of the 1' have been obtained, they may be used
as new trial values and the whole process repeated to give still better estimates.
By continually repeating the process, we may obtain estimates to any desired
degree of accuracy. Clarke suggests using G—1 rather than J' for the first
iteration and also after an iteration in the course of which the estimate of
any changes by more than 0 1 in absolute value. This helps to speed up
the whole process.

In order to test the agreement between observed and expected, we
calculate

[n—(2p+5)/6—2k/3] loge !lJ7/1iI (16)

where ' and AS' are our maximum likelihood estimates. If n is large, this
will be approximately a x2 for

21[(p_k)2_p_k}
degrees of freedom. Lawley and Maxwell (1971) state that the approxima-
tion is probably good enough if (n —p) 50. Thus, in our present case
where n = 19, the use of this approximation is, in principle, quite unsatis-
factory. Fortunately, however, this turns out not to be a serious difficulty
with our data (see below).

An old difficulty in factor analysis is that, in order to maximise the likeli-
hood, it may be necessary for some of the 1i to be negative. Since the &j
are variances, negative estimates are inadmissable. In such cases, the best
estimate of these is zero. The appropriate procedure is to take these
to be zero from the start and carry out the analysis on this basis. The method
for doing this is given byJoreskog (1967). The first step is to identify the
characters which have zero specific variances. If, at any stage during the
standard analysis described above, a specific variance becomes negative it is
set " on the boundary " i.e. at some small positive value, say 000l, and kept
at that value until the standard analysis is completed. If there are no such
cases, the analysis is concluded. Otherwise, we have an "improper
solution ", in which a number of variables, say m, have specifics on the
boundary. It is these specifics which are now set equal to zero from the start
of our re-analysis.

It is easier if we list the variables so that the m variables are written first.
Correlations involving these m, but not other characters, appear as S11,
a submatrix of S. Similarly, correlations involving only the other (p—rn)
characters appear as a submatrix 22 Since we have listed the m variables
first, we may write S in the form

I/S11 Si2
'\Sfl S22

where S12 (= S1) is a submatrix made up of correlations of the rn with the
(p —m).

For the S11, we must find factors which account for all the variation
(since specifics are zero). This is the situation appropriate for principal
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components analysis (see e.g. Morrison, 1967). In order to account for all
the variation represented by S11, we shall require m factors. Let D be a
matrix with the latent roots of S11 on the leading diagonal and zero elsewhere
and let C be the corresponding matrix of column vectors, standardised so
that the sum of the squared elements in a column is unity. The loadings of
the m characters on the m factors are, from principal components theory,
given as

= S11CD—I.

The loadings of the other (p — m) characters on our m factors may be shown
to be

1121 = S21CD.
We now ask how many more factors, if any, we must invoke to account for
the variation in the (p — in) characters. Since we have already accounted
for all variation in the in characters, the loadings of these in on the additional
factors, if they exist, must be zero. In that any variation which the (p— m)

share with the m has been taken care of in the A21, we consider only variation
in the (p— m) which might be found when the in are kept fixed; we ask how
many factors, if any, are required to explain this residual variation. The
correlation matrix for the (p — m), given fixed m, is from standard correlation
theory

S221 = — S21S 512.

The in characters are said to have been "partialled out ". We now carry
out the standard factor analysis, as if there were only (p— m) variables with
correlation matrix S221. However, the number of factors we start with will
depend on the stage of the analysis. For example, suppose we have already
rejected k = 1, 2 or 3 and find that m specifics are on the boundary when we
try 1c = 4. If m = 4, then we should start the analysis of the (p — m) with the
number of factors equal to zero. On the other hand, if m were equal to 1,
it would be futile to assume less than three factors for the (p — m), since we
have already rejected the notion that there are less than four factors.

The procedure described for dealing with specifics on the boundary was
first suggested by Lawley. Joreskog (1967) gives a rigorous demonstration
that the approach does give maximum likelihood estimates.

5. FACTOR ANALYSIS OF THE DATA

We started our computations by postulating a single factor. No negative
specifics were detected. The approximate x2 testing goodness of fit of the
model turned out to be 9885 for 54 d.f. with tabulated P <0.1 per cent. In
spite of reservations about the use of this x2 on the present data, P is so small
that there can be no serious doubt that the one-factor model must be rejected.

On attempting to fit a two-factor model, we found that three variables
gave negative specifics. Hence no proper two-factor solution exists; the
presence of three negative specifics means that at least three factors must be
postulated.

We therefore started again, this time with three factors. One variable
gave a negative specific. This was partialled out, as described in section 4.
The x2 proved to be 4425 for 34 d.f. with tabulated P = 20 per cent. —
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10 per cent. Thus we have no reason to reject the three-factor model. We
conclude that at least three independent polymorphisms exist in this popula-
tion.

Factor loadings and specific variances are given in table 4. Formulae
for the standard errors of these estimates, for cases where n is large are given
by Lawley and Maxwell (1971). In the present case, the value of n is too
small for the formulae to be appropriate.

TABLE 4

Maximum likelihood estimates of loadings and specific variances

Loadings
Specific

Character Factor 1 Factor 2 Factor 3 variance
LN7 072 —059 —022 0•09
H7 —0•46 —0-22 —0•37 060
D7 —0•47 —034 —025 0-60
LN1O —0•30 —054 —059 0•26
H10 —0•71 —0•39 —049 0.11
D10 —066 —040 —0-58 0•07
FT 064 —0•03 073 0-05
HF 000 0.00 1.00 000
AF 009 023 038 080
BF 061 —054 0•42 016
SR —025 0•06 0•34 082
CN 040 —0•29 —046 055

Even had we been able to establish the significance of some of the specific
variances, it would be dangerous to interpret these as evidence for further
polymorphisms, each for one character only. If such polymorphisms exist,
specific variances will indeed be inflated, but the converse does not hold
since specific variances must include effects of non-linear relationships
between characters, which are present occasionally to a small degree, and
also within family effects which have not been completely eliminated by
taking family means.

As we have discussed earlier, although the number of factors detected has
biological meaning, no biological significance can be attached to the factors
themselves or to the corresponding loadings, since these have been estimated
using the arbitrary condition (6). If now we drop this condition, we may
argue tentatively as follows. Given a group of characters which cover a
number of different aspects of the life of a plant, it would be very surprising
if most of the characters were to load on all three factors. Rather, we would
expect at least some characters to show a high loading on some factor(s) and
a low loading on the rest. This pattern of loadings would approximate to
the type of pattern known as "simple structure" (Thurstone, 1945).

Since, as discussed earlier, we can multiply the A by any orthogonal
matrix T without affecting the goodness of fit of the model, we can attempt
to find a T such that the new loadings AT exhibit something approaching
simple structure. Geometrically, this is equivalent to representing the
factors on mutually orthogonal axes and rigidly rotating these axes; hence
multiplying by T is referred to as "factor rotation ". Details are given in
the textbooks cited.

Rotation was carried out by the varimax method of Kaiser (1958)
Results are given in table 5. They obviously do not give a neat picture
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Factor 1 is the easiest to interpret; all the characters which represent rate of
development (H7, D7, LNIO, HlO, DlO, FT) apart, rather oddly, from LN7,
Load heavily or fairly heavily on it. Factors 2 and 3, however, defy any
simple explanation. A careful study of the whole profile of development
would probably be the most useful approach to elucidate the whole situation.

Comparing our results with those of Gale and Arthur (1972), we find
that although the number of polymorphisms detected is the same in both
experiments, the detailed grouping of characters shows differences, some-
times marked. H7, D7, FT and to a lesser extent HF show a fair measure
of agreement; the most striking difference is given by LN7, which was clearly
associated with H7 but not HF in the previous experiment. Both AF and BF
also behave differently. In the previous experiment, AF was closely asso-
ciated with HF, whereas here, variation in AF is mostly specific. Differences
in BF have already been noted and discussed.

TABLE 5

Loadings obtained after factor rotation by the varimax method

Loadings

Character Factor 1 Factor 2 Factor 3
LN7 004 —068 —067
H7 —060 0-19 —005
D7 —0-63 0-05 0-03
LN1O —0-78 —0-03 —0-36
H10 —091 0-22 —0-02
D10 —093 0-24 —0-12
FT 0-72 —063 0-20
HF 041 —0-45 0-80
AF 0-36 —003 027
BF 0-26 —087 —0.10
SR 0-01 0-01 0-43
CN —009 —0-20 0-64

While some of the characters were measured in both experiments, some
characters were not, for reasons given in section 2. It has often been noted
that a difference of this kind may alter the factor structure for the characters
common to both experiments. Some of the changes we have discussed (e.g.
in AF) seem too drastic for this explanation to be plausible. We conclude
that, as is hardly surprising, results obtained from a single population will
not, in general, be the same as results obtained by combining material from
different populations.

More generally, we should stress that factors and loadings will not
necessarily be constant from one situation to another. In so far as different
genes may be segregating in different populations and genetic variation
between populations may well involve some loci which are usually fixed
within populations, different factor structures will emerge. Similarly,
results obtained on inbred lines may differ from those on F1's between them,
since correlations between dominance effects may differ from those between
additive effects; the derived F2's and later generations could also be different,
owing to recombination. Finally, if characters show strong genotype-
environmental interaction, different factor structures would arise if plants
were grown in different environments.
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6. SUMMARY

1. Plants derived from 20 partially inbred lines derived from a wild
population of Popover dubiuzn were scored for 12 characters. All of these
characters showed significant differences between lines.

2. Correlation coefficients between characters were calculated on family
means. These correlations represent covariation which is almost entirely
genetical in origin. Non-linear relationships between characters were
virtually absent.

3. On the assumption that gene substitutions affecting a pair of characters
are consistent in their action, i.e. substitutions which increase one character
nearly always increase the other, or nearly always decrease the other, a low
genetic correlation between two characters would imply that they are
controlled by separate sets of genes. Hence it should be possible to obtain a
minimum estimate of the number of sets of loci controlling the characters
studied.

4. This estimate is best obtained by means offactor analysis. This method
shows that three independent factors must be invoked to account for the
observed results.

5. It is concluded that at least three independent polymorphisms were
present in the original wild populations.
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