GENOTYPE-ENVIRONMENT INTERACTION AND DEVELOPMENTAL REGULATION IN ARABIDOPSIS THALIANA

IV. WILD MATERIAL; ANALYSIS

JANE M. WESTERMAN
Department of Genetics, University of Birmingham
Received 6.vi. 70

1. Introduction

Previous papers in this series (Westerman and Lawrence, 1970; Westerman, 1970a, 1970b) have concerned the investigation of genotype-environment interaction in inbred lines of the species. Though this material poses fewer analytical problems than that from natural populations, it suffers from the disadvantage that the variation observed cannot be confidently ascribed to an adaptive response by the lines to a variable environment. For this purpose, we must consider material sampled from a wild population.

The present paper, therefore, presents a genetic analysis of the average and developmental phenotypes of the descendants of plants sampled from a disused railway-track population at Wixford, Warwickshire. Seed was collected from this location in the summer of 1967, and prior to this experiment the descendants of 16 of the original plants sampled had been inbred by self-fertilisation for two generations. This paper concerns a diallel set of crosses between seven of these lineages, chosen to represent the full range of early- and late-flowering times.

2. Material and methods

The diallel progenies were sown directly on to agar medium, and then vernalised for 4 weeks at $1 \pm 1^{\circ} \mathrm{C}$. After the vernalisation period, they were raised in four environments, set at $10^{\circ}, 15^{\circ}, 20^{\circ}$ and $25^{\circ} \mathrm{C}$. respectively, and with a constant photoperiod of 16 hours. In each environment, ten seeds per family were sown in each of two independently randomised blocks. All other details are similar to those described in Westerman and Lawrence (1970).

The quantitative characters scored were flowering time, height, number of leaves in the basal rosette, and number of siliquae produced by each plant.

3. Results

The first plants flowered on day 18, and scoring was terminated after approximately 90 days of flowering in each environment. Percentage germination was 96 per cent., and less than 2 per cent. of the plants failed to flower; these non-flowering plants, most of which occurred at $25^{\circ} \mathrm{C}$. (table 1), have been excluded from the data presented here. From the family means for each character in each environment (tables 1-4), it is clear that, as expected, the population sample comprises a mixture of early-

Table 1
Mean flowering time of diallel families at each temperature. Numbers of non-flowering plants are in brackets
$10^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\dot{r}
1	$69 \cdot 30$	76.79	74.90	70.11	74.95	$67 \cdot 25$	$75 \cdot 39$	71.52
2	$70 \cdot 28$	$54 \cdot 86$	$53 \cdot 41$	83.93	54.14	$70 \cdot 50$	$55 \cdot 66$	63.91
3	75.93	$53 \cdot 15$	$52 \cdot 10$	78.25	$50 \cdot 65$	$73 \cdot 18$	$59 \cdot 14$	63.46
4	$71 \cdot 35$	83.97	$89 \cdot 50$	94.22	81.80	$74 \cdot 15$	87.50	81.65
5	73.75	55.91	$49 \cdot 90$	81.55	$52 \cdot 55$	$70 \cdot 01$ (1)	50.95	63.00
6	61.73	71.79	$71 \cdot 16$	71.35	$72 \cdot 60$	$65 \cdot 40$	78.05	70.46
7	$70 \cdot 28$	$55 \cdot 45$	$55 \cdot 10$	81-20	60.70	73.89	56.81	$65 \cdot 50$

$20^{\circ} \mathrm{C}$.

	$\overbrace{1}$	2	3	4	5	6	7	\vec{r}
1	$41 \cdot 39$	$45 \cdot 94$	$46 \cdot 15$	$51 \cdot 34$	$47 \cdot 44$	$36 \cdot 50$	$47 \cdot 22$	$44 \cdot 94$
2	$48 \cdot 39$	$23 \cdot 39$	$23 \cdot 64$	$73 \cdot 95$	$26 \cdot 30$	$39 \cdot 06$	$24 \cdot 75$	$37 \cdot 80$
3	$40 \cdot 67$	$24 \cdot 72$	$21 \cdot 75$	$66 \cdot 40$	$22 \cdot 65$	$47 \cdot 85(1)$	$24 \cdot 55$	$35 \cdot 44$
4	$53 \cdot 84$	$67 \cdot 45(1)$	$59 \cdot 96$	$78 \cdot 58(3)$	$62 \cdot 44$	$54 \cdot 69$	$59 \cdot 70(4)$	$63 \cdot 06$
5	$43 \cdot 56$	$22 \cdot 55$	$23 \cdot 35$	$59 \cdot 75(2)$	$23 \cdot 21$	$45 \cdot 67$	$22 \cdot 78$	$35 \cdot 62$
6	$41 \cdot 00$	$57 \cdot 60$	$49 \cdot 30$	$51 \cdot 77(1)$	$48 \cdot 43$	$40 \cdot 50$	$43 \cdot 31$	$46 \cdot 16$
7	44.35	$25 \cdot 05$	$23 \cdot 48$	$64 \cdot 47(1)$	$24 \cdot 36$	$50 \cdot 05$	24.97	$36 \cdot 00$

$25^{\circ} \mathrm{C}$.

Table 2
Mean height at flowering time of diallel families at each temperature

	$10^{\circ} \mathrm{C}$.							
	1	2	3	4	5	6	7	\ddot{r}
1	38.00	$51 \cdot 16$	$59 \cdot 00$	$60 \cdot 39$	$52 \cdot 50$	36.40	59.59	$50 \cdot 20$
2	49.49	47.92	$42 \cdot 13$	$75 \cdot 67$	37.74	59.25	$47 \cdot 35$	51.82
3	59.47	36.65	34.75	81.95	$40 \cdot 71$	$55 \cdot 89$	$45 \cdot 19$	$49 \cdot 52$
4	59.85	77.59	73.71	68.22	71.40	$69 \cdot 25$	82.72	$70 \cdot 40$
5	$56 \cdot 10$	38.02	33.34	71.25	35.02	53.71	34.90	$47 \cdot 13$
6	$30 \cdot 22$	$67 \cdot 25$	53.37	$60 \cdot 20$	52.75	34.95	63.80	53.00
7	$52 \cdot 66$	$47 \cdot 35$	$42 \cdot 40$	$65 \cdot 15$	$47 \cdot 40$	70.03	$52 \cdot 13$	$54 \cdot 49$

$20^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	$82 \cdot 61$	69.90	$67 \cdot 60$	86.84	$75 \cdot 92$	72.95	$84 \cdot 17$	77-12
2	$73 \cdot 11$	$66 \cdot 65$	66.67	67.83	$69 \cdot 90$	$80 \cdot 06$	$74 \cdot 02$	$71 \cdot 26$
3	71.49	$65 \cdot 37$	$65 \cdot 15$	71.00	$60 \cdot 45$	76.64	73.60	$70 \cdot 72$
4	71.08	83.23	87.06	76.50	78.79	91.06	82.24	78.81
5	78.01	66.64	69.60	85.83	61.00	85.95	71.46	$72 \cdot 22$
6	$79 \cdot 15$	$75 \cdot 95$	82.05	83.34	74.43	66.65	$72 \cdot 52$	78.20
7	84.24	$71 \cdot 70$	68.23	62.09	72.07	87.37	76.81	$75 \cdot 52$

$25^{\circ} \mathrm{C}$.

	$\overbrace{1}$	2	3	4	5	6	7	\bar{r}
1	$58 \cdot 65$	$57 \cdot 90$	$57 \cdot 78$	$87 \cdot 95$	$68 \cdot 06$	$64 \cdot 27$	$78 \cdot 25$	$68 \cdot 57$
2	$64 \cdot 32$	$64 \cdot 92$	$66 \cdot 10$	$90 \cdot 92$	$63 \cdot 70$	$73 \cdot 24$	$74 \cdot 25$	$68 \cdot 89$
3	$71 \cdot 90$	$65 \cdot 65$	$64 \cdot 70$	$80 \cdot 55$	$65 \cdot 30$	$71 \cdot 83$	$74 \cdot 19$	$69 \cdot 42$
4	$89 \cdot 30$	$71 \cdot 15$	$84 \cdot 54$	$74 \cdot 54$	$78 \cdot 60$	$85 \cdot 48$	$90 \cdot 15$	$81 \cdot 38$
5	$63 \cdot 30$	$69 \cdot 75$	$67 \cdot 20$	$64 \cdot 19$	$69 \cdot 15$	$66 \cdot 97$	$71 \cdot 60$	$67 \cdot 77$
6	$65 \cdot 06$	$64 \cdot 78$	$66 \cdot 77$	$81 \cdot 56$	$66 \cdot 35$	$58 \cdot 78$	$82 \cdot 70$	$71 \cdot 09$
7	$74 \cdot 60$	$72 \cdot 80$	$70 \cdot 28$	$85 \cdot 45$	$65 \cdot 40$	$88 \cdot 72$	$80 \cdot 45$	$77 \cdot 81$

[^0]Table 3
Mean leaf number of diallel families at each temperature

	1	2	3	4	5	6	7	\bar{r}
1	$19 \cdot 16$	22.37	23.95	19.84	23.25	18.33	23.24	$20 \cdot 88$
2	$20 \cdot 59$	$13 \cdot 86$	$12 \cdot 91$	22.97	13.94	22.05	$13 \cdot 62$	17.07
3	21.45	$12 \cdot 10$	11.40	22.15	11.55	20.43	13.90	16.54
4	$20 \cdot 60$	24.24	24.21	23.23	23.95	21.00	$23 \cdot 61$	22.74
5	20.99	12.67	11.55	23.85	11.95	22.37	$10 \cdot 80$	17.00
6	17.78	$19 \cdot 84$	21.23	22.00	23.35	17.95	22.25	$20 \cdot 63$
7	$21 \cdot 66$	$14 \cdot 00$	13.25	23.45	$15 \cdot 85$	$22 \cdot 25$	$12 \cdot 34$	17.33

$15^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	21-50	$24 \cdot 08$	25.95	$23 \cdot 28$	26.05	18.93	$25 \cdot 37$	$23 \cdot 14$
2	24.77	12.00	11.50	12.80	$13 \cdot 30$	19.99	$12 \cdot 64$	16.22
3	$24 \cdot 17$	11.60	$10 \cdot 41$	$25 \cdot 63$	10.76	20.74	12.54	$16 \cdot 62$
4	$25 \cdot 41$	$25 \cdot 68$	$25 \cdot 80$	$23 \cdot 70$	25.67	$25 \cdot 22$	$26 \cdot 19$	23.85
5	$24 \cdot 10$	11.61	$10 \cdot 80$	$25 \cdot 26$	$10 \cdot 27$	23.89	11.75	17.29
6	19.05	22.90	20.31	$23 \cdot 62$	$23 \cdot 59$	$19 \cdot 34$	21.57	21.60
7	19.74	$12 \cdot 15$	$12 \cdot 01$	$23 \cdot 39$	14.70	23.87	$13 \cdot 05$	17.29

$20^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	11.00	12.90	13.95	$12 \cdot 59$	14.05	$10 \cdot 17$	13.78	$12 \cdot 87$
2	14.56	$6 \cdot 76$	$6 \cdot 81$	$24 \cdot 11$	7.00	11.45	7.37	11.23
3	$12 \cdot 27$	$7 \cdot 35$	$5 \cdot 70$	$19 \cdot 87$	$6 \cdot 50$	$16 \cdot 15$	6.80	$10 \cdot 50$
4	16.09	21.54	17.34	20.92	$18 \cdot 13$	16.43	16.73	18.54
5	$13 \cdot 17$	$7 \cdot 15$	$6 \cdot 25$	17.88	$6 \cdot 11$	$12 \cdot 84$	6.34	$10 \cdot 27$
6	11.70	$16 \cdot 30$	$15 \cdot 10$	16.79	$15 \cdot 30$	$12 \cdot 00$	13.05	13.83
7	$12 \cdot 89$	$7 \cdot 15$	$7 \cdot 25$	$20 \cdot 17$	$7 \cdot 00$	14.39	$6 \cdot 46$	$10 \cdot 42$

$25^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	11.75	17.20	17.61	$20 \cdot 26$	$15 \cdot 25$	13.94	17.37	$15 \cdot 17$
2	$17 \cdot 11$	$7 \cdot 01$	6.25	23.92	$6 \cdot 51$	13.01	6.90	11.67
3	14.55	6.75	6.05	18.70	$5 \cdot 74$	16.61	6.90	$10 \cdot 66$
4	20.40	23.00	18.93	26.04	$22 \cdot 19$	21.92	$19 \cdot 36$	$21 \cdot 30$
5	14.05	$6 \cdot 10$	$5 \cdot 75$	23.41	6.25	$16 \cdot 52$	$5 \cdot 50$	11.06
6	10.83	$16 \cdot 12$	12.96	16.22	13.55	11.00	$12 \cdot 30$	14.28
7	$10 \cdot 25$	$6 \cdot 45$	6.31	$17 \cdot 81$	7.80	13.94	$6 \cdot 30$	$10 \cdot 25$

[^1]Table 4
Mean siliqua number of diallel families at each temperature
$10^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	36.69	32.43	$34 \cdot 10$	27.23	31.85	$37 \cdot 45$	$30 \cdot 35$	$32 \cdot 85$
2	$30 \cdot 55$	$34 \cdot 05$	$34 \cdot 12$	$30 \cdot 30$	31.04	$28 \cdot 45$	32.87	$32 \cdot 02$
3	33.00	33.40	$33 \cdot 90$	$30 \cdot 30$	$32 \cdot 15$	31.51	37.07	$33 \cdot 20$
4	29.60	$30 \cdot 71$	$30 \cdot 56$	28.43	$32 \cdot 15$	$29 \cdot 16$	$30 \cdot 65$	29.59
5	$32 \cdot 26$	36.31	$34 \cdot 10$	$29 \cdot 80$	34.90	$29 \cdot 17$	37.25	32.76
6	$35 \cdot 56$	$28 \cdot 25$	31.56	28.90	29.05	33.43	31.75	31.30
7	$32 \cdot 11$	31.75	$35 \cdot 10$	28.00	33.75	$30 \cdot 60$	$34 \cdot 52$	$32 \cdot 88$

1	2	3	4	5	6	7	\bar{r}	
1	$31 \cdot 28$	$25 \cdot 28$	$25 \cdot 11$	$27 \cdot 26$	$24 \cdot 45$	$29 \cdot 40$	$24 \cdot 87$	$26 \cdot 92$
2	$25 \cdot 50$	$26 \cdot 40$	$27 \cdot 00$	$25 \cdot 25$	$26 \cdot 70$	$23 \cdot 46$	$28 \cdot 17$	$26 \cdot 05$
3	$23 \cdot 77$	$27 \cdot 01$	$25 \cdot 52$	$23 \cdot 55$	$25 \cdot 31$	$25 \cdot 36$	$27 \cdot 12$	$25 \cdot 71$
4	$26 \cdot 98$	$24 \cdot 79$	$24 \cdot 95$	$25 \cdot 15$	$22 \cdot 45$	$25 \cdot 77$	$23 \cdot 78$	$24 \cdot 98$
5	$24 \cdot 45$	$25 \cdot 84$	$26 \cdot 65$	$24 \cdot 77$	$25 \cdot 29$	$25 \cdot 20$	$26 \cdot 40$	$25 \cdot 16$
6	$31 \cdot 90$	$25 \cdot 46$	$25 \cdot 05$	$24 \cdot 99$	$25 \cdot 05$	$32 \cdot 47$	$23 \cdot 18$	$26 \cdot 63$
7	$25 \cdot 40$	$27 \cdot 48$	$28 \cdot 05$	$24 \cdot 89$	$24 \cdot 40$	$23 \cdot 10$	$26 \cdot 60$	$25 \cdot 72$

$20^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	19.29	$7 \cdot 89$	8.89	$5 \cdot 48$	$9 \cdot 57$	$12 \cdot 92$	$9 \cdot 29$	9.14
2	11.46	10.76	9.72	$6 \cdot 45$	$10 \cdot 70$	$8 \cdot 06$	$10 \cdot 90$	9.07
3	$6 \cdot 78$	$9 \cdot 39$	11.60	4.91	10.28	7.50	$10 \cdot 78$	$9 \cdot 07$
4	7.05	$5 \cdot 65$	4.49	$2 \cdot 75$	9.98	$8 \cdot 80$	$5 \cdot 40$	6.13
5	11.58	9.92	$10 \cdot 80$	8.09	11.83	$9 \cdot 25$	$10 \cdot 30$	$10 \cdot 27$
6	9.18	5•12	$7 \cdot 18$	$9 \cdot 68$	$8 \cdot 36$	11.11	$8 \cdot 68$	8.82
7	$9 \cdot 21$	$10 \cdot 21$	$12 \cdot 95$	$4 \cdot 42$	11.24	$6 \cdot 54$	$8 \cdot 64$	$9 \cdot 09$

$25^{\circ} \mathrm{C}$.

	1	2	3	4	5	6	7	\bar{r}
1	$9 \cdot 40$	$7 \cdot 65$	$8 \cdot 89$	$5 \cdot 71$	6.31	8.19	$5 \cdot 50$	$7 \cdot 68$
2	$6 \cdot 62$	11.40	11.20	$5 \cdot 57$	11.31	$5 \cdot 96$	10.95	8.97
3	8. 10	11.45	11.70	$5 \cdot 56$	11.80	$6 \cdot 45$	$9 \cdot 42$	$9 \cdot 46$
4	6.89	4.50	$4 \cdot 26$	4.92	$4 \cdot 09$	$6 \cdot 62$	$4 \cdot 36$	$5 \cdot 32$
5	6.90	11.75	$12 \cdot 70$	4.90	$12 \cdot 25$	$7 \cdot 07$	$12 \cdot 20$	9.36
6	10.56	$5 \cdot 75$	$9 \cdot 11$	$6 \cdot 45$	$7 \cdot 30$	$9 \cdot 61$	$5 \cdot 80$	$7 \cdot 44$
7	$7 \cdot 45$	10.05	$10 \cdot 11$	$5 \cdot 72$	$10 \cdot 25$	$5 \cdot 67$	$11 \cdot 25$	$8 \cdot 57$

$\bar{r}=$ Array mean.
and late-flowering types. The obvious differences between environments are least between 20° and $25^{\circ} \mathrm{C}$., a fact which can be attributed in part to irregularities in the $20^{\circ} \mathrm{C}$. environment. At both 20° and $25^{\circ} \mathrm{C}$., the high temperatures caused some degree of irregular flowering and incomplete siliqua development. The mean siliqua numbers at these temperatures are therefore unexpectedly low (table 4), and indeed the plants appeared less healthy than those grown at 10° and $15^{\circ} \mathrm{C}$.

Table 5
Hayman analyses of variance of the average phenotype. Entries are mean squares

Source	d.f.	FT	HT	LN	SN
a	6	10658.7510***	2347-4718***	1065.0078***	115.5225***
b	21	1066.9244***	460-0133***	151-7518***	37-4514***
b_{1}	1	3091-2988***	2603.8431***	627.9360***	139.8930***
b_{2}	6	43-5170**	276.0748***	8-4442***	9.5152***
b_{3}	14	1360.9294***	388.7134***	179•1562***	42-1068***
c	6	179.8924***	86.7781*	11.6090***	$4 \cdot 2750$
d	15	53-1078***	63-5882*	8.7861***	1.6467
t	48	1838-2060***	525-4084***	203.7142***	31-8743***
Environments	3	15950-2427***	25699•0829***	1259-6660***	14401.0711***
$E \times a$	18	219•0159***	251-2261***	31-3817***	16.2552***
$E \times b$	63	33-3332***	100.6398***	5•5232***	4.7870***
$E \times b_{1}$	3	38-2677*	92.9461*	$3 \cdot 2596$	$5 \cdot 4601$
$E \times b_{2}$	18	$15 \cdot 0000$	47.9350	2-8398	$3 \cdot 4933$
$E \times b_{3}$	42	40.8378***	123.7771***	6.8350***	5•2933***
$E \times c$	18	62-6889***	34.0702	7.9413***	$2 \cdot 8959$
$E \times d$	45	39.9210***	53.2047**	4-2540***	$2 \cdot 3245$
$E \times t$	144	62-2717***	96-3184***	8.6612***	5-2146***
Blocks	1	$2 \cdot 0574$	828-2551***	0.4758	413.3819***
$B \times t$	48	12.8033	48•8610*	$2 \cdot 6646$	$2 \cdot 7432$
$E \times B$	3	81-2341***	230.9006**	12.3121***	62.5761***
$E \times B \times t$	144	14.3624	41.9813*	$2 \cdot 3361$	2.7738
Replicates	3134*	14.5029	34.7302	$2 \cdot 0017$	$2 \cdot 4822$

$\mathrm{FT}=$ flowering time, $\mathrm{HT}=\underset{(*=3037 \text { for } \mathrm{SN} .)}{\text { height }, \mathrm{LN}=\text { leaf number, } \mathrm{SN}=\text { siliqua number. }}$

$$
\left({ }^{*}=30\right.
$$

(a) Average phenotype

The Hayman (1954) analyses of variance (table 5) indicate the presence of both additive and non-additive variation for all four characters; there are also significant differences between reciprocal crosses with respect to flowering time and leaf number. The model appropriate for the genetic effects is Eisenhart's (1947) Model I, since these families comprise a quota sample of those originally collected. The significance of the b_{1} item in all cases implies that the non-additive variance is directional, dominance being in the direction of late flowering, tallness and a large number of basal leaves (tables l-3). For the fitness character (table 4), parent 4 possesses the greatest number of dominant alleles and produces thd least siliquae, thus suggesting that dominance is in the direction of a small number of siliquae. At the higher temperatures only, this dominance of parent 4 could be due
to an underestimate of its score for siliqua number because of the failure of plants to flower (table 1). However, we are confident that this rather surprising outcome may be ascribed to the obvious truncation of growth suffered by some of the plants in this experiment, in consequence of their having exhausted the supply of nutrients and water in the agar medium. Clearly, under conditions of agar culture, the longer the interval between germination and flowering, the less moisture and nutrients will be retained by the medium at flowering time. Thus when family 4 , which is by far the latest parent (table I), began to flower, the agar lost its moisture very rapidly, leading to early death, and, hence, truncation of siliqua production at a premature stage. On the other hand, families which flowered earlier were subject to less stress during growth, and often finished flowering before the agar had dried up completely. In conjunction with this effect, members of array 4 were in general the largest plants, bearing most leaves and most shoots. Consequently, they required more nutrients and moisture from the medium at all stages during their growth than did earlier flowering, smaller types. Indeed, the latter effect may be the more important since, even after a vernalisation treatment of 12 weeks, parent 4 still produced the lowest number of siliquae, although its time to flowering was markedly reduced (Jones, personal communication).

Turning now to the inheritance of the developmental phenotype, it is clear that, as was the case for the average phenotype, the additive mean square $(E \times a)$ is the largest item with respect to all characters. Analysis of the data within environments shows that the magnitude of the additive effects increases with temperature for flowering time and leaf number. There appears however to be no linear relationship in this respect for the remaining characters. In contrast to the average phenotype, the mean dominance deviation $\left(E \times b_{1}\right)$ is small, indicating that the direction of dominance does not change with temperature. The significant non-additive variation ($E \times b_{3}$) is remarkably constant in magnitude over environments for flowering time and leaf number, but decreases with increasing temperature for height and siliqua number. Reciprocal differences, both consistent (c) and specific (d), interact with environments effectively only with respect to flowering time and leaf number, and are largest at $15^{\circ} \mathrm{C}$.

(b) Developmental phenotype

In the earlier papers which were concerned with diallel crosses between inbred lines, the linear and non-linear components of the developmental phenotype were estimated by regressing family means on to environmental means, the latter being calculated as the average performance of the parents in that environment (Perkins, 1970). The specification of the environment in this way is less informative in the present case where we cannot assume that the parents are homozygotes. Family means have been regressed, therefore, on to environmental values defined as the average performance of all 49 families raised in that environment. Then the phenotype of family i in environment j is

$$
\Upsilon_{i j}=\mu^{\prime}+d_{i}^{\prime}+\left(\mathrm{I}+\beta_{i}^{\prime}\right) \varepsilon_{j}^{\prime}+\delta_{i j} \quad \text { (Perkins and Jinks, 1968) }
$$

where d_{i}^{\prime} is now defined as the genetic effect of the i th family, rather than the additive genetic effect of that family, as in analyses of inbred lines.

The genetic analysis of the linear and non-linear components of genotypeenvironment interaction were performed in exactly the same manner as described in Westerman (loc. cit.). The total sum of squares with respect to the linear components of interaction now becomes however

$$
\left(t^{2}-1\right) \sigma_{e}^{2}+\sum_{i=1}^{t^{8}} \beta_{i}^{\prime 2} \sum_{j=1}^{s} \varepsilon_{j}^{\prime 2} \quad \text { with }\left(t^{2}-1\right) \text { degrees of freedom; }
$$

and with respect to the non-linear component of interaction is

$$
\left(t^{2}-1\right)(s-2) \sigma_{e}^{2}+\sum_{j=1}^{\delta} \sum_{i=1}^{t^{2}} \delta_{i j}^{2} \text { with }\left(t^{2}-1\right)(s-2) \text { degrees of freedom, }
$$

where $\sigma_{e}^{2}=$ replicates mean square
$s=$ number of environments
$t=$ number of diallel parents.
Table 6
Hayman analyses of variance of the linear and non-linear components of the developmental phenotype

Source	FT			
	Linear			
	df.	M.S.	d.f.	M.S.
a	6	352.6742***	36	60.0079***
b	21	40.0149***	126	20.9338***
b_{1}	1	15.1160	6	21.6724
b_{2}	6	23.8028	36	11.1622
b_{3}	14	48.7484***	84	25-0688***
c	6	40.8329**	36	32-1968***
d	15	38.9744***	90	21-1702**
t	48	78.8744***	288	27-2998***
Replicates	3134	14.5029	3134	14.5029

HT			
Linear			
		Non-linear	
d.f.	M.S.	f.	M.S.
6	126.0296***	36	148.5525***
21	126.8051***	126	61.0978***
1	125.6285	6	$47 \cdot 4496$
6	21.2590	36	55-3408*
14	172-1232***	84	64.5400***
6	22.5693	36	$30 \cdot 6447$
15	51.5029	90	42.0447
48	90.1467***	288	62-2689***
3134	34.7302	3134	34.7302

Source	______				SN			
		$\underbrace{\text { Linear }}$		$\underbrace{- \text {-linear }}$		$\underbrace{\text { inear }}$		$\underbrace{\text { linear }}$
	d.f.	M.S.	d.f.	M.S.	d.f.	M.S.	d.f.	M.S.
a	6	58.8339***	36	7.0599***	6	13.6032***	36	9.1779***
b	21	10.0418***	126	2•8482***	21	4.7593**	126	3.2911*
b_{1}	1	10.0006*	6	1.9916	1	1.8773	6	$3 \cdot 0203$
b_{2}	6	3.9774	36	$2 \cdot 2413$	6	$3 \cdot 5908$	36	$3 \cdot 4257$
b_{3}	14	12-6437***	84	3•1694***	14	5-4723**	84	3.2517*
c	6	5.5559*	36	4.5119***	6	$4 \cdot 2016$	36	2.1767
d	15	6.5871***	90	$2 \cdot 5070$	15	1.3707	90	$2 \cdot 5692$
t	48	14.5006***	288	3.4760***	48	4.7361***	288	3.6620***
Replicates	3134	$2 \cdot 0017$	3134	$2 \cdot 0017$	3037	$2 \cdot 4822$	3037	$2 \cdot 4822$

The results of these analyses are presented in table 6. The linear component of the developmental phenotype is in all cases larger than the nonlinear component, the former accounting for $84,67,90$ and 66 per cent. of the total variation attributable to genotype-environment interaction for flowering time, height, leaf and siliqua number, respectively. We noted
earlier that additive effects appear to be important in respect of the interaction of these families with the environment. The present analyses show that the additive mean square is in general the largest item with respect to both the linear and the non-linear response; that is, its importance is

Fig. 1.-The relationship of mean siliqua number and the response of the three primary characters. The unbroken lines indicate the position of the three groups (see text).
not confined to one component of this response. The same is apparently true with regard to the non-additive and reciprocal effects displayed by genes determining the developmental phenotype.
(c) Relationship of primary characters with siliqua number

In fig. 1 mean siliqua number is plotted against the response metric,
$\left(1+\beta_{i}^{\prime}\right)$, for each of the three primary characters. The diagrams are divided into four parts by the average of the $\left(1+\beta_{i}^{\prime}\right)$'s, which is of course unity, and by the average siliqua number of the 49 families.

At first sight, the interpretation of the diagram for flowering time appears unambiguous. All the points lie on a significant regression line running from the top-right to the bottom-left quarter; in other words, the predominant mode of developmental regulation appears to be such that flexibility is advantageous. Closer examination of this diagram, however, reveals a more complex situation; the 28 points fall into three groups, as indicated by the unbroken lines on fig. 1. The first group, which consists of the seven families having parent 4 as one parent, lies in the bottom left-hand quarter; that is, these families produce a low number of siliquae, and their flowering time changes relatively little over environments. The second group of points falls on the whole in the bottom right-hand quarter, and concerns hybrids between an early $(2,3,5,7)$ and a late $(1,6)$ flowering parent. Since the reproductive output of these F_{1} 's is much lower than that of their parents, they display considerable non-allelic interaction with respect to siliqua number; their response for flowering time is, however, similar to the response of their parents. Finally, crosses between two late or two early parents constitute the third set of points, in the top right-hand quarter. These 13 points, formed by crosses within early- and late-flowering types, fall on a significant regression line running from the top-left to the bottom-right corner of this quarter; that is, these families manifest various degrees of developmental stability, with the late parents (l and 6) and their hybrid being the most stable.

Turning to the diagram for height (fig. 1), we find that exactly the same three groups of points can again be distinguished, although the first and second groups now overlap. Thus, the hybrids between an early- and a late-flowering parent (Group II) not only produce fewer siliquae, but also tend to respond less with respect to height, than do their parents. Within the third group, in the top right-hand quarter, there is some tendency for the 13 points, and in particular those which concern hybrids, to exhibit varying proportions of developmental flexibility, the late families 1 and 1×6 being now the most flexible.

An examination of the diagram for leaf number (fig. l) indicates that the general picture is similar to that for the other primary characters. In the first group, we notice that the hybrid 2×4 lies outside the diagram, since it has a $(1+\beta i)$ value of less than zero; in other words, its response to temperature, though slight, is opposite in direction to that of the other 27 families. The relative reponse of parent 4 over environments is even less for leaf number than for flowering time and height, thus emphasising the contrast between the developmental phenotype of this parent and that of the remaining six parents. The explanation of this consistent and marked difference in the level of variability exhibited by parent 4 is, however, not clear. Furthermore, we recall that the low reproductive output of this parent may be ascribed to truncation by growth on agar medium. For both these reasons, families having parent 4 as one parent will be excluded from further discussion. The hybrids in the second group appear in general to change more over environments with respect to leaf number than do their parents; that is, they are less stable. However, the development of members of the third group, consisting of crosses between two early or two
late parents, is apparently not regulated in any specific manner. The mode of developmental regulation of leaf number has been previously found (Westerman and Lawrence, 1970; Westerman, 1970b) to be more diverse than that of the other primary characters. Thus, although the average phenotypes of flowering time and leaf number are always highly, but not completely, correlated, the developmental phenotypes of these two characters are in general relatively unassociated.

4. Discussion

The families in this natural population of Arabidopsis fall into two distinct groups, an early-flowering type with a low number of basal leaves (families $2,3,5,7$) and a late-flowering type with a large number of leaves (families 1,6). These types also differ in their response to vernalisation, in that the early type requires no vernalisation, while the late type has a marked vernalisation requirement (Jones, personal communication). This population was chosen for study in the belief that the bimodal distribution of variation with respect to flowering time and leaf number indicated a polymorphic situation.

In a polymorphic population, crosses between the two morphs should of course on average be at least as fit as crosses within the morphs, assuming that the environmental niches of the morphs are equally represented in the sample used. We recall, however, that hybrids between an earlyand a late-flowering parent produce fewer siliquae than do either of their parents. Furthermore, the low reproductive output of these hybrids does not appear to be a result of truncation of their growth since, when array 4 is omitted, there is no association between flowering time and siliqua number. Regarding high siliqua number as synonymous with high fitness, we are therefore forced to conclude that it is unlikely that the early- and late-flowering types share a common gene pool; that is, they are independent populations.

The interpretation of these results, assuming that there are two independent populations, is not quite straightforward. With respect to flowering time, for example, interpopulation hybrids might be expected to be less stable than intrapopulation hybrids. We noted earlier (fig. 1), however, that the large difference in reproductive output between non-co-adapted and co-adapted crosses is not apparently accompanied by any difference in the variability of this primary character. Thus the conclusion that the early- and late-flowering types comprise sympatric populations is obviously speculative. Further information would be desirable, for instance, on the amount of outcrossing that occurs under natural conditions.

Despite the discontinuity in average phenotype between the early and late populations, their developmental phenotypes are nevertheless remarkably similar; the genetic systems controlling these two aspects of the total phenotype are therefore apparently unrelated. The optimum for flowering time in this material appears to be brought about by stabilisation of the expression of the genes concerned, with the late-flowering families being the most stable. The response of inbred lines to temperature (Westerman and Lawrence, 1970; Westerman, 1970a) and to photoperiod (Westerman 1970b) has also been consistently found to be such that stability of expression is advantageous. We may argue then that the genotype-environmental
interactions displayed by this character are not adaptive; a thesis which is further supported by the synchrony of the flowering response observed in the wild.

With respect to height, on the other hand, a high level of variability appears to be the adaptive optimum; this has been observed both for inbred lines (Westerman and Lawrence, 1970; Westerman, 1970b) and for this wild material. We conclude that height is therefore an opportunistic character, possessing the capacity to express different optimal phenotypes in different environments.

The last point is concerned with some assessment of the method used to examine the evolutionary role of genotype-environment interaction. This method relates the average phenotype of a fitness character to the developmental phenotype of a primary character; the relationship may be direct or via a correlation between these and the average phenotype of the primary character. We have seen above that the same direct association has been consistently observed in all four experiments with respect to each of the two characters, flowering time and height. On the other hand, the correlations of both mean siliqua number and the response of the primary character with the mean expression of the primary character are not uniform over experiments for either character. We may be confident, therefore, that this method provides an informative and convenient means of ascertaining whether the variation exhibited in respect of genotypeenvironment interaction is or is not adaptive.

5. Summary

1. The diallel progenies of seven partly inbred descendants of a natural population of Arabidopsis were analysed genetically with respect to four metrical characters, flowering time, height, leaf and siliqua number.
2. The inheritance of all characters is determined by genes with both additive and non-additive effects; there are also significant differences between reciprocal crosses for flowering time and leaf number.
3. All characters exhibit genotype-environment interaction, and for flowering time and leaf number the interaction is largely accounted for by a linear regression to the environmental values.
4. Both linear and non-linear response to environment is controlled by additive and non-additive (b_{3}) variation, and, with respect to flowering time and leaf number, reciprocal differences.
5. The optimum for flowering time is brought about by stabilisation of the expression of the genes concerned, the late-flowering families being the most stable. With respect to height, on the other hand, a high level of variability appears to be the adaptive optimum.
6. The results suggest that the early- and late-flowering families comprise two independent populations, rather than one polymorphic population.

Acknowledgments.-I am indebted to Dr M. J. Lawrence for his advice and guidance. I also wish to thank Mr Malcolm Perry for technical assistance. This work was carried out during the tenure of a C.S.I.R.O. Postgraduate Studentship, and supported by a grant from the S.R.C.

6. References

eisenhart, c. 1947. The assumptions underlying the analysis of variance. Biometrics, 3, 1-21.
hayman, b. I. 1954. The analysis of variance of diallel tables. Biometrics, 10, 235-244.
perkins, jean m. 1970. Environmental and genotype-environmental components of variability. VI. Diallel sets of crosses. Heredity, 25, 29-40.
perkins, jean m., and Jinks, J. l. 1968. Environmental and genotype-environmental components of variability. III. Multiple lines and crosses. Heredity, 23, 339-356.
westerman, jane m. 1970a. Genotype-environment interaction and developmental regulation in Arabidopsis thaliana. II. Inbred lines; analysis. Heredity, 26, 93-106.
westerman, Jane m. 1970b. Genotype-environment interaction and developmental regulation in Arabidopsis thaliana. III. Inbred Iines; analysis of response to photoperiod. Heredity, in press.
westerman, Jane m., and lawrence, m. J. 1970. Genotype-environment interaction and developmental regulation in Arabidopsis thaliana. I. Inbred lines; description. Heredity, 25, 609-627.

[^0]: $\bar{r}=$ Array mean.

[^1]: $\bar{r}=$ Array mean.

