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1. INTRODUCTION

THE great majority of loci governing discontinuous morphological traits
show complete dominance, at least with respect to their visual effects, and
some form of progeny testing is required to obtain estimates of genotypic
frequencies of such loci. In studies with predominantly inbreeding species
where the expected frequency of recessives among the progeny of hetero-
zygous parents approaches 025 (the expectation under self-fertilisation),
the usual procedure has been to grow 10-16 plants per parent in progeny
tests. This procedure is justified on the grounds that the probability of
obtaining at least one recessive in a family from a heterozygous individual is
slightly greater than 95 and 99 per cent. for progenies of 10 and 16 individuals,
respectively. With this procedure, heterozygosity is estimated as the pro-
portion of families among the dominants which contain at least one recessive
individual. This estimate will be biased downward, although with progeny
sizes greater than nine, the degree of bias is relatively small.

Since progeny testing is both time-consuming and expensive, it is neces-
sary to make the most efficient use of the limited numbers of individuals that
can be handled in such tests. Consequently, we undertook a detailed study
of the effects of varying the number and size of progenies on the efficiency
of estimating heterozygosity in plant populations.

2. RESULTS

Consider a plant population polymorphic for a diallelic locus (alleles
A, a) in which the genotypic frequencies are (D, H, R). If we score a random
sample of individuals from this population for the dominant (A—) and
recessive (aa) classes, then the relative proportion of dominants in the sample
will provide an estimate of (D+H). The question we wish to consider here
is: What is the optimum procedure for the estimation of the relative pro-
portion of heterozygotes, H*(H* = H/[H+D] = H/El—RI), in the domin-
ant class? Initially we will consider a population which reproduces by
complete selfing (outcrossing rate, t = 0), and then extend the results to
species which practice mixed mating or random mating (0 <t 1).

(a) Complete selfing, t = 0

For a species which practises complete selfing, the probability of obtaining
at least one double recessive individual in a progeny of size k from a hetero-
zygous parent is = 1 — (P)k
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where p is the probability any member of such a progeny will show the
dominant phenotype. Under complete seffingp is a constant and equals 075.

If we grow n progenies from individuals with the dominant phenotype
(A —) and score the number of progenies in which all individuals show the
dominant phenotype (class 0 below) and those with at least one recessive
(class 1), we have the following expectations:

Class Observed number Expected number
0 a0 n(l_irH*)
1 a1 nirH*

Total n n

Since there is one degree of freedom and one parameter to be estimated
(it is assumed at this time that R is known), it follows, using a result due to
Bailey (1951), that the maximum likelihood estimate of H* can be obtained
by equating either of the observed numbers with their expected values. This
procedure yields:

H* = a1/nlT = ai/n[l_(p)k] (2)
with p = 075.

The information per family is given by
if = ir/H*(1_irH*) (3)

and the variance of H*

Var(H*) = 1/I = H*(l _irH*)/nir (4)

where the total information I = ni1 (Mather, 1957).
Given that we have the resources to grow a total of X( nk) plants, the

problem reduces to one of determining what combination of n and k will
minimise the variance of H*. In other terms, since N is fixed, we wish to
determine what combination of n and k will maximise the information per
plant (ip = i1/k) with respect to H .

It is evident from (3) above that the optimum family size (k0) is a function
of H*. However, it was not possible to obtain an explicit expression for k0
in terms of H*. Consequently, we determined the relationship between H*
and k0, shown in fig. 1, numerically. It will be noted that progeny sizes of
10 or greater are optimal only if H* > 086 and further, that for all values of
0<H*0.57 the optimum family size is 1.

(b) Mixed mating or random mating, 0< t 1

If the assumption t = 0 is relaxed, then the probability, p, that a progeny
of a heterozygous parent will show the dominant phenotype is no longer a
contant but a function of H, R, and t. If we assume that the outcrossing
rate is homogeneous for all genotypes then, assuming there is no gametic
selection, p is given by

p = {3+t[1—2R—H]}. (5)
Since p is a function of H (or H*), the observed numbers of dominant and
recessive individuals in each progeny will yield additional information about
the magnitude of H*. Therefore, if we wish to maximise the total informa-
tion with respect to H*, it is necessary to classify the families into k + 1 classes
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for t = 0. It should be noted that for H1 099, k0 20 and as H* approaches one,
k0 approaches infinity.

(i.e. those with 0, 1, 2, ..., k recessives) in contrast to the two classes used
above. If, as before, we grow n families from individuals with the dominant
phenotype we have the following expectations (assuming R and t are known):

Class Observed number Expected number
0 a0 nKoH*pk+n(l_H*)
1 a1 nK1H*pk_l(l_p)
2 a2 nK2H*p2(1._p)2
3 a3 nK3H*pk—S(I_p)3

ak nKkH*(I_p)k

n

0
S.—

Li1
'I,
-J

F—

0

where K5 =
From the logarithmic likelihood function we have the following equation

for the estimation of H*,

ao(H* (1 _R)t1cpk—l +4ir} n—a0 tk(n—a0) (1 —R)

4(l_Ii.H*)
+

4p
t(l—R) k— Eia=O. (6)4p(l—p) .-i

HETEROZVOOSITY IN POPULATIONS 235

20

16

12

8

4

LEVEL OF HETEROZYGOS IT? (Ha)
Fin, h—Relationship between optimum family size (A0) and level of heterozygosity (H0)

for t = 0. It should be noted that for H0 099, A0 20 and as H0 approaches one,
A0 approaches infinity.

(i.e. those with 0, 1, 2, - ., k recessives) in contrast to the two classes used
above. If, as before, we grow n families from individuals with the dominant
phenotype we have the following expectations (assuming R and t are known):

Class Observed number Expected number
0 a0 nK0H*pk+n(l_H*)
1 a1 nK1H*p(1_p)
2 a2 nK2H*pk—2( 1 —p)2
3 a3 nK3H*p1S( 1 —p)3

Total n
nKkH*(1

n



236 A. H. D. BROWN, B. S. WEIR AND D. R. MARSHALL

For t = 0, (6) reduces to (1) above as expected. However, for t>O there
appears to be no simple algebraic solution to this equation, except when
k = 1 (see (8) below). Nevertheless, for any specific set of data, estimates
of H* can easily be obtained by standard numerical methods.

The information per family is given by

= {ktH*(l_R)pk_ljJ2I l_H*
k (1 _p)_2pk_i_2+ H* {p(l__p)+1H*t(l_R)(i+kp_k)}2. (7)

While it is evident that, for t> 0, the optimum family size is a function of
H*, R and t, as before, it was not possible to obtain an explicit algebraic
expression for k0. Consequently, we determined the optimum family size
numerically for a wide range of values of the above parameters. The results
are shown, in part, in table 1. It will be noted that, for a given H*> 050,
the optimum family size is a decreasing function of the outcrossing rate (t)
and is a minimum in a population which is completely outcrossed. These
results confirm our previous conclusions and indicate that, in predominantly
inbreeding species, progeny size often or greater are optimal only ifH*>O.86
In predominantly outcrossing species H* must be even greater before such
progeny sizes are optimal. For all other values of H*, the most efficient
procedure to use is the available resources to grow a larger number of
families but fewer individuals per family. In fact, for the great majority of
possible genotypic combinations the optimum family size is one. If the
genotypic frequencies are close to those predicted by Wright's equilibrium
law under inbreeding:

AA :p—(l—F)pq 1—:
Aa : 2(1 —F)pq where F =
aa : q—(1—F)pq,

a curvilinear relationship exists between H and R. From this relationship
and the data given in table 1, it can be shown that R should exceed O9O for
inbreeders and O5O for outbreeders before larger family sizes are considered.
Thus only natural populations which largely consist of recessives require
family size greater than one for optimal efficiency.

3. Discussior

The results obtained here indicate that it is possible to increase sub-
stantially the efficiency of progeny tests for the estimation of heterozygosity
by careful experimental planning. For example, if k0 = 1, an experiment
based on single progeny families is from two to five times more efficient than
one of equal size but with 16 individuals per family. In practice, of course,
it will not be possible to determine accurately the optimum family size for
a particular population since it is a function of the parameter (H*) we wish
to estimate. However, under most circumstances, some a priori knowledge
of the order of magnitude of twill exist, the original sample from the popula-
tion furnishes an estimate of R. From this information it is possible to obtain
an approximate estimate of H by assuming genotypic frequencies obey
Wright's equilibrium law. With these approximate values of t, R and H the
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TABLE 1

Opdmum family size (k0) for the estimation of H* in populations with various values of outcrossing (t)
and genotype proportions (H and R)

(a) Outcrossing rate, t = 010

Heterozygosity
(H)

0•10
020
030
040
050
0•60
070
080
090
095

Frequency of recessive homozygote (R)-
0 005 0.10 0•20 0•30 040 050 060 0•70 080 0•85
1 1 1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 5
1 1 1 1 1 3 6
1 1 1 2 4 8
2 2 3 5 8
3 4 6 9
6 8 10

11 14
14

(b) Outcrossing rate, t = 050

Heterozygosity
(H)

0•10
020
030
040
0•50
060
0.70
080
090
095

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

2 5 8
9 13
13 c

(c) Outcrossing rate, t 090

Heterozygosity
(H)

0•10
020
030
040
050
0•60
070
0•80
090
095

Frequency of recessive homozygote (R)
A

0 0.05 0•10 020 030 040 0.50 060 0•70 080 0•85
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2
1 1 1 1 1 1 3
1 1 1 1 1 4
1 1 1 1 4
1 1 1 5
1 1 5 cc
5 11

12

optimum family size is obtained by interpolation in table 1. Effective out-
crossing, 1* (Allard and Workman, 1963), could be used in place of t, to
adjust for possible heterotic selection.

In deriving the above results we have assumed that:

(i) R and t are known from independent estimates,
(ii) all families are of equal size, and

(iii) n and k can be varied without limit.

Frequency of recessive heterozygote (R)

0 005 010 0•20 0•30 0•40 0•50 060 070 080 0•85
1 1 1 1 1 1 1 2
1 1 1 1 1 2
1 1 1 1 3
1 1 1 4
1 1 5 CZ)

1 6 cc
7 cc
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These assumptions will seldom be met in practice. If R and t are
unknown, it simply means they must be estimated co-jointly with H. The
procedure for the joint estimation of H, R and I for family size of one is given
byjain and Marshall (1967). When Ic> 1, R can be derived from the pro-
portion of recessives in the population. The parameters I and R are esti-
mated simultaneously by the scoring method using the expectations given
above, augmented by a further data class: the number of heterozygotes
observed among m progeny grown from the recessive parents, which has
expectation [mt(H+2R)]. The variance of these estimates can be estimated
from the information matrix derived by partial differentiation. The
technique is straightforward although cumbersome.

Further, relaxation of the assumption of equal family size does not alter
the problem in principle. It does, however, increase the difficulty in estima-
tion of H, as it is necessary to derive an estimate of H for each family size
and then combine the estimates.

Relaxation of the assumption that n and Ic can be varied without limit
does alter the above conclusions. If n is limited, then the number of indivi-
duals per family should be increased to the limit of resources. This is the
situation when the target population of dominant (A—) plants is smaller
than the experimental resources. If the biological maximum for Ic is less
than Ic0, the number of families of size Ic should be increased to the limit of
the available recources. Such a situation might occur in a species with low
fecundity.

It is also important to consider the relative effort implied by an increment
in k compared with an increment in n in the above model. Our analysis
defines "limited resources" solely in terms of plant numbers. In practice,
however, an experiment in which Ic = I possesses a number of additional
advantages. First, a much simpler experimental layout is required as the
dominants can be grown as a bulk and families no longer need be kept
separate. Second, the iteration procedure for the joint estimation of H
and I is simpler than when Ic > 1. Third, when only an estimate of H is
required, it follows from (2) and (5) above that /1 is given by:

= —[1—1(1 —2R)] +v'[l —1(1 —2RY12+ 16a1(1 —R)lJn given t> 0. (8)

These advantages increase the variety of populational conditions under
which an experimenter would commit his resources to growing single
progeny families.

4. SUMMARY

The efficiency of estimating heterozygosity at a dominant locus in plant
populations by progeny testing, under limited experimental resources, was
examined in terms of the amount of information per plant. The main
findings were:

1. The optimum family size is a function of the relative proportions of
heterozygotes (H) and double recessives (R) in the population, and the
outcrossing rate (I).

2. In predominantly inbreeding species the usually accepted practice of
growing progenies of 10 or more individuals per family is optimal only if
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H* (= H/i—R)>O.86. In predominantly outcrossed species, H* must be
even greater before such family sizes are optimal.

3. In the great majority of situations likely to be encountered in prac-
tice, the most efficient procedure is to grow as many families as possible with
only a single progeny per family. The applicability of this procedure and
its advantages are discussed.
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H* (= H/i—R) > 086. In predominantly outcrossed species, H* must be
even greater before such family sizes are optimal.

3. In the great majority of situations likely to be encountered in prac-
tice, the most efficient procedure is to grow as many families as possible with
only a single progeny per family. The applicability of this procedure and
its advantages are discussed.
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