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I. JNT1ODUCTION

IN population genetic theory, the solutions of a model often represent the
conditions in terms of the various parameters of selection, migration, mating
system, etc., that allow stable polymorphisms under a specific genetic
system. Certain elements of a predictive theory may then utilise this
knowledge of the possible outcomes (Lewontin, 1967). Further, a compara-
tive analysis of different models might provide certain ways to "explain"
experimental observations. In so far the theory has guided empirical
explanations, we may argue for the potential use of such theoretical efforts
in evolutionary biology. In this note we shall illustrate this briefly, using a
simple deterministic model involving frequency-dependent selection at a
diallelic locus segregating in a large mixed selfing and random mating
population. Frequency-dependency favouring the rarer genotype (apo-
static selection) in one or more fitness components (viability, mating pro-
pensity, fecundity, etc.) has drawn wide attention in recent years (Spiess,
1968, for review), essentially as an attractive alternative to the overdominance
model for stable polymorphisms, and as a model of genetic feedback mech-
anism regulating population changes.

In our work on the genetics of inbreeding plant populations (Allard,
Jam and Workman, 1968), true or marginal overdominance was emphasised
in terms of the "explanations" for an observed excess of heterozygosis as
well as in the simulation of models under a variety of selection specifications
(Workman and Jam, 1966; Jam and Workman, 1967; Jam and Marshall,
1968). For multilocus models, the existence of multiple peaks was discussed
as being a significant property of the polymorphic, interacting gene systems
(Jam, 1968). In this note, frequency-dependent selection is shown to yield
far more favourable conditions for stable polymorphisms than hitherto
reported for these other models.

2. REsuLTs AND DI5CU55ION

Hayman (1953) developed solutions of a model involving the relative
selective values of the three genotypic classes A1A, A1A2, A2A2 given by
x : 1 :j respectively in zygotic selection just prior to the census stage. In-
breeding due to varying proportions of selfing (s) and outcrossing (t = 1 —s)
in conflict with heterozygote advantage (x, y < 1) results in the limits on
(x, y) as shown in fig. 1 where regions A, B represent the values of (x, y)
leading to the fixation of alleles A and A2 respectively, and regions C, D
with stable nontrivial equilibria. In regions C and D the population has
fewer or more heterozygotes respectively than expected on the basis of
Hardy-Weinberg theorem. Two points to note are: (i) with increasing s,
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the amount of heterozygote advantage required increases, and (ii) the
homozygote fitnesses need to be nearly equal for the cases of low amounts
of overdominance. Thus, regions C, D are much smaller for heavy inbreed-
ing.
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FIG. 1.—Phase diagrams for Hayman's model with s = 020 and 095, x, y< 1 (over-
dominance).

Next, consider the following model of frequency-dependent selection
with two components of relative fitnesses:

Relative frequency of zygotes in
nth generation

A1A1 A1A2 A2A2

f1(n) f2(n) f(n)

Frequency-dependent fitnesses 1 —t1f1(') : 1 —t2j(') : 1 —t3f3(')

Frequency independent fitnesses :

Then, the recursion relations following Hayman's scheme are given by
f1(n+l)(1 —t1f1')){s(f)++f2')+t(f1'+ f2(t))2}, etc., and denotingp =f+ jf2 = 1 —q, and F — 1—f2 two simultaneous nonlinear equations in p

x

S 0.20

Genotype

x 1



FREQUENCY-DEPENDENT SELECTION 219

and F, ip = = 0, are obtained. By methods of computer Simulation,
these are solved iteratively for finding equilibria (defined atfd< lO—, or for
regions of fixation, p>.099995 or <OOOO05 taken asp 1, 0 respectively).
Clarke and O'Donald (1964) gave exact solutions for the case s = 0 and

= 4 = t3, to show that there may be up to three equilibria, not more
than two of which are stable. Stability was tested either by using various
initial frequencies or by small perturbations in equilibrium frequencies.
The equilibria were determined for x andy varied with Ol increments in
order to plot the regions A-D for the cases (a) t1 = t2 = t3 = 0.3 and (b)
t1 = 0.2, t2 = = 0.3 (asymmetrical).
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The phase diagrams for the case (a) and two levels of inbreeding are
given in fig. 2. The most significant result to note is the enlargement in
regions C, D to include x, y> 1 (underdominance), with increasingly greater
region under higher selfing levels. Comparing with Hayman's model (fig. 1),
note that both restrictive conditions of the overdominance model are relaxed
due to the frequency-dependent component becoming proportionately more
important with higher inbreeding. Thus, the homozygote fitnesses (x, y)
at any given stage could vary over a range of underdominance levels and
need not be close to each other. As noted by Clark and O'Donald (1964)
for s = 0, the marginal selective values at equilibria in region C may show
underdominance. Further, it was noted for the asymmetrical case (b) with

x
Fio. 2.—Phase diagrams for frequency-dependency model (a) with s =O•20 and O•95,

O x,y 2. Note that for s = O95, region C of stable equilibria remains large for
underdominance (x,.y> 1).
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s = 020 and 095 that the region C was slightly smaller and that the two
stable equilibria obtained for s = 0 and 02 in the (x, y> 1) range tend to
converge toward a single stable point for increasingly higher selfing (e.g.
s = 0.95) so that the multiple peaks under this model do not necessarily
represent a wider region C (unlike epistatic, multilocus cases). In summary,
it appears that apostatic selection offers a very potent model at least in
theory favouring the maintenance of genetic variation in inbreeding popula-
tions.

It also follows from the shifts in phase boundaries that the estimation of
constant selective values (x, y) using only a limited number of generations
or from a single generation data with the assumption of equilibrium as done

TABLE 1

Relative selective values (x, y) of homozygot€s with and without Ire quency-d€pendency

Equilibria under Clarke-O'Donald model (a)

Frequencies of Hayman's model *
Percentage A A

selfing A1A1 A1A8 A8A8 x y x y
O•20 0•0008 00286 0•9706 04 l3 040 093

0•20 03236 0•3528 03236 1•4 14 l•41 l4l
(metastable)

095 0•4828 00344 04828 14 14 121 12l
(metastable)

095 0•3812 003l3 0•5875 l4 15
these equilibria

0•95 0•1816 00208 0•7976 1.6 1are inadmissible

* The estimates of (x,y) at equilibria are given by
= {2f1(2f2—C)}/{f2(4f1+C)},

y = {2f3(2f8—C)}/{f2(4f3+C)},
where C = sf8—t(4f1f—f82) (Hayman8).

in the past could be misleading if, in fact, frequency-dependency was in-
volved. Table 1 lists a few examples of nontrivial equilibria and the sets of
appropriate selective values under the two models with or without frequency-
dependent selection. Clearly, the mode! should be identified through
additional independent tests of the modes of selection before one could
establish the overdominance or some other factor maintaining polymorph-
isms. Note that even the means of (x,y) estimated over a set of seasons on
the basis of any single fitness component (say, seed number) rather than the
overall survival rates might result in erroneous predictions. Moreover, it
is now apparent that such estimates would not be sufficient to describe the
extent and stability of polymorphisms. Multistage data over several
successive generations are required to discern among these and other models
of selection. Experiments are now underway to determine the role of
frequency-dependency in barley populations along these lines. Several
other models of frequency-dependency have also been simulated involving
a matrix of frequency-dependent competition coefficients. The results to
be presented in detail elsewhere provide evidence on the overwhelming
theoretical role of frequencydependency in inbreeding populations. Bio-
logical evidence would further provide significant information on the
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dynamics of ecological interactions, co-adaptation and adjustments in the
mating system. The properties of self-regulation and integration may become
known to involve one or the other frequency-dependent factors under a
very wide range of situations e.g. interspecies competition (Marshall and
Jam, 1969), optimum hybridity (Harding et al., 1966), self-incompatibility
alleles (Sheppard, 1960), and pollination ecology (Faegeri and Pijl, 1966).

3. SUMMARY

1. A model of selection in a large, mixed selfing and random mating
population was simulated using digital computer in order to study frequency-
dependent selection involving advantage for the rarer genotype.

2. With increasingly higher levels of selfing, frequency-dependency
could allow wider conditions on the frequency-independent component of
fitnesses such as to maintain stable polymorphisms with underdominance.
An asymmetrical model further showed that two different stable equilibria
tend to converge with greater selfing.

3. The significance of such situations as a theoretical alternative to the
postulated widespread role of overdominance in inbreeding populations
was discussed particularly in terms of the problems of estimating selection
parameters.
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