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1. INTRODUCTION
1.1. Basic orientation

The change in the mean of a trait during a few initial cycles of a direc-
tional selection imposed on a population is among the most reliable criteria
for estimating the exploitable amount of genetic variation in a given genetic
population. Estimates obtained by this procedure include not only the
"additive" genetic variance but also some of the variance attributable to
non-allelic gene interactions. This is an advantageous rather than a dis-
turbing aspect of the method, for one is interested in all of the utilisable
genetic variation whether it be " additive " or not. In some studies " two-
way selection" may be employed. That is, starting from a reference or
"base" population, selection on the right-hand tail of the phenotypic
distribution to yield a "high" line and selection on the left-hand tail to
yield a "low" line can be done simultaneously.

To estimate rate of genetic "gain ", the meaningful quantity we are
concerned with is the rate at which the mean of a selected line diverges from
the mean o te parent population. Under two-way selection, an index of
total genetit. dance i provided by the rate of divergence between the high
and low lines. It is the detection and the evaluation of these quantities that
are of primary concern in this paper.

1.2. Correction for environmental effects
In evaluating the effects of selection through successive generations, one

must also reckon with trends and fluctuations in environment. Effective
evaluation of the environmental effects may be accomplished, for example,
by carrying the base (unselected) population through the successive cycles
simultaneously with the selected line(s) and in the same environment.

Correction" for environmental effects in the selected line can be accom-
plished by subtracting the base line means from the selection line means,
generation by generation, before analysing the data.

1.3. Analytical complications introduced by correction for environmental effects
In two-way selection studies, the correction processjust mentioned involves
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a statistical complication. Both the high and the low lines are corrected
by subtracting the performance of the base (control) line. This introduces
correlations between the high- and low-line data which should be taken into
account when analysing experimental results. This complication does not
arise in one-way selection experiments involving only one line and a control
line. If in the same experiment, however, one or more control lines are used
to provide environmental correction, and two or more selection lines are
corrected by one or more of the control lines, the complication will be
present. One can, of course, analyse such corrected data by a weighted
analysis which takes into account the correlations between observations
(Richardson, 1965). The main point of this paper, however, is to elucidate
a method of statistical analysis which effects the desired corrections but
which is done on the raw data, thereby avoiding the correlations introduced
by the subtraction procedure.

1.4. Associated matters
1.4.1. Control populations. It is important to choose the control lines

wisely. Kojima and Kelleher (1963) have discussed several desirable
characteristics of control populations. However, if there exist interactions
between genetic make-up primarily associated with the trait under study
and the environment, the appropriate analysis depends heavily on the choice
of the control population. It is assumed that the selection lines and the
control lines will respond in similar fashion to environmental fluctuations
encountered. Unless this assumption is realised, the correction for environ-
mental trends and fluctuations likely will be biased. It is conceivable that
as selection changes the genetic constitution of a population, the same control
may not be appropriate for the entire experiment. However, since this
possibility is not likely to become a problem for short-term selection experi-
ments, it will be ignored.

1.4.2. Choice of control populations in general. If either one- or two-way
selection studies are being done starting from two or more base populations
which are quite similar genetically, then only one appropriately selected
control line will be needed to provide environmental corrections for all. If,
however, the two or more base populations from which the selection lines
are derived differ considerably in genetic make-up, then the lines should be
grouped on the basis of genetic similarity and a proper control line should
be carried for each group. In practice, the magnitude of genetic differences
between the two or more base populations and the economics of the experi-
mental situation will dictate how finely the base populations should be
classified and, hence, the number of different control lines used.

1.4.3. Asymmetry in two-way selection studies. Selection on the high side
may result in a rate of divergence from the base or control population that
is different in absolute magnitude from that on the low side. Problems
involved have been discussed by Falconer (1953). These include the scale
of measurement, inbreeding depression during the experiment, and genetic
interactions which may be uncovered by the changing genetic composition
of the selection lines. Interpretation of the regressions fitted to the selection
data depend heavily on a consideration of these possible factors, but in the
short-term experiment they offer no difficulties to the regression model for
analysis.

1.4.4. Xature of selection trends through time. Selection through successive
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generations results in a time-trend of responses. The magnitude of responses
usually diminishes, yielding a non-linear trend, with the total response to
selection approaching an asymptote. That is, the response to selection,
barring mutation and sampling and environmental vagaries, approaches
an upper (lower) asymptote. Even though the effect of selection is non-
linear through time, the effects of selection can be practically approximated
by a linear trend over the first several generations (cycles) of the selection
process. The linearity assumption is made throughout this paper.

1.4.5. Replication of tests. Replications in time and/or location provide a
better estimate of the error involved than do single experiments in assessing
the progress to be expected in the selection process and in the estimation of
genetic variance for the one or more base populations under study. Selection
experiments involve genetic-environmental interactions. Further, they are
stochastic processes and performance in a given generation is dependent on
the genetic samples retained in previous generations. If desirable alleles are
lost at one stage as a result of sampling vagaries, the subsequent effects of
selection are restricted. In one replication some desirable genes might be
lost early, and in another replication not at all. Thus the progress realised
over a given number of generations can vary from one replication to another.
If the population retained at each step is small, the progress can be subject to
high sampling variance. The analysis of several replications permits a
proper estimate of experimental error. If there is only one replication, the
estimate of the error component of the regression line for genetic sampling
is not estimable, and consequently the estimate of error fails to include it.

Generally, the analytical approach to replicated experiments depends
on whether they are conducted together or separately. When separately,
an additional analysis performed on the estimates of regression coefficients
obtained by the analysis to be presented may be done to evaluate differences
among rates of selection progress of the various replications. If measured
together, extra factors for replications and trend by replication interactions
can be included in the model with identifying subscripts and a composite
analysis performed.

1.4.6. Final orientative comments. The statistical analysis to be presented
will not encompass the problem of replicating tests nor take into account that
selection experiments are stochastic processes. Extensions to encompass such
complications will, however, be briefly discussed. The method will be
described for experiments involving one or more control lines with one or
more selection lines associated with each control. It is an improvement over
those most frequently used in that it explicitly considers more of the character-
istics of selection data. The numerical example is a relatively simple one,
namely, one with two-way selection on two base populations and a single
control line.

2. METHOD OF ANALYSIS

2.1. Theory
2.1.1. Identflcation of observations. LetYlulk be the observed performance

for the kth generation (k = 0, 1, ..., g) of the jth line (j = 0, 1, ..., lhj) of
the ith base population (i = 0, 1, ..., p) in the hth population class (h = 1,

2, ..., c). A class is that group of lines, including control, sharing a common
environmental response. Because some hzjk possibilities may not be present
in a given set of data, we note the identification matters given in table 1 for
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observations in a given population class. All of the possible observations
identified in table 1 are not necessarily available. Further, the number of

TABLE 1

Details of identification of observations for a particular class

Item Population Line Generation Observations identified
i=

1 0 0 0 A control line different from base pop-
ulation(s) before selection has begun
on base population(s).

2 0 0 1, 2, ..., g A control line different from base pop-
ulation(s) after selection has begun.

3 0 1, 2, ..., l 0 Same as item 1 for several control lines
different from base population(s).

4 0 1, 2, ..., i 1, 2, ..., g Same as item 2 for several control lines
different from base population(s).

5 1, 2, ...,p 0 0 Base population(s) before selection has
begun.

6 1, 2, ...,p 0 1, 2, ..., g Base population(s) (unselected) carried
as control during selection of other
lines.

7 1, 2, ...,p 1, 2, ..., I 0 Not possible.
8 1, 2, ..., p 1, 2, ..., I 1, 2, ...,g Selection lines after selection has begun.

base populations is permitted to vary between classes and the number of
selection lines to vary among base populations. It is assumed, however,
that all lines are observed for the same number of generations and that, at a
given generation, all lines in a given population class are observed under the
same environment.

2.1.2. The model. Write

YistJk = . Ic + E15• + Zh5k Phil. + 5hj3k (1)

where .,c = environmental effects occurring at the /cth generation for the
hth class,

= the expected performance of the ith base population in the
hth class,

ZhJ1c a characterisation of the selection cycle; this could be the
cumulative selection differential corresponding to yhjh' or it
could simply be the cycle number, k,Pi. = the slope of the (assumed linear) relation to generation
resulting from selection—by definition $,,. = 0,

6h15Ic = random fluctuations assumed to be independent with zero
mean and variance, crhJk2.

A dot in these notations indicates that the quantity is defined as an average
over that particular subscript range. As noted, selection experiments are
stochastic processes. The genetic spectrum represented in a given generation
is subject to sampling fluctuation which conditions the spectrum represented
in the next generation. Strictly, the q,JIc are not independent from genera-
tion to generation in a given line, even though assumed to be so here.

2.1.3. The model in matrix form. Note that the model involves no para-
meters common to two or more population classes. The analysis can be
done separately for each population class, and should be done separately if
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the variance differs between classes. If there is reason to make comparisons
between lines in different population classes, this can be accomplished after
the individual analyses are done. It is convenient, therefore, to proceed as
though only one population class (and one control line) is involved, and the
subscript, h, will be dropped.

The model in matrix form may be written

(2)

where y = column vector of observed means,
X matrix of coefficients,
/3 = column vector of effects: cc's, and a's,

= column vector of random errors.
The construction of the X-matrix may be easily achieved by ordering

and partitioning the y-vector in a convenient way. If the y-vector is parti-
tioned according to the y-subscripts as in table 2, then it is a simple matter
to place zeros, ones, or z's (usually the cumulative selection differentials)
along each row of the X-matrix: ones in columns for effects present in an
observation, or 's in the case of the a's, and zeros in all other columns.
Where a partition is missing in the y-vector there will be no corresponding
row partition in the I-matrix. An example of forming the I-matrix is given
in table 2.

This analysis is done on means. All means might not have the same
number of observations. Even if, as shall be assumed here, the variance
among individuals is the same, say a2, for all zjk, the variance of the means
can differ. That is, the variance of Yjik will be a2/njj1j, where nji is the
number of observations in It is especially likely, for example, that the
initial (prior to selection) observation of a two-way selection experiment
(i.e. the mean for the base population) will involve more observations than
the later means. Thus, a weighting matrix, W, is needed to weight each
mean proportionally to its relative information. Under the present assump-
tions, W is a diagonal matrix with the diagonal elements being the numbers
of observations in the means. The matrix is diagonal because the E's are
assumed to be independent.

2.1.4. Computational formulas. The analysis is easily handled by the usual
procedures for weighted multiple regression. The column vector of para-
meter estimates, b, is obtained as

b = (X'WX)1X'Wy, (3)

where priming indicates the transpose of a matrix or vector. The variance-
covariance matrix of b is given by

V(b) = (X'WX)'Q1. (4)

The quantity, Q, is taken from table 3, which outlines the preliminary
analysis of variance.

Interest will lie in given comparisons, each of which can be written as

c=v'b (5)

where v is an appropriate column vector of coefficients. The variance of a
comparison is

V(c) = v'(X'WX)—1vQ1 (6)
2K2
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and the sum of squares for a comparison is

SS (comparison) = b'v[v' (X'WX)—1v] 'v'b. (7)

Some examples of v are given in table 4. The examples of comparisons given
are not exhaustive, nor are they independent, but the experimenter may select
a set appropriate to his interest.

TABLE 2

Arrangement of the X-matrix relative to that of the y-vector (for rows) and model parameters (for columns)

Sub- Coefficients of
;cripts
ofy 9S..o c #.. a200 . . . fl11 , . . . f3,, Description of partition

000 1 0 0 ... 0 0 0 ... 0 0 0 ... 0 Control population different
001 0 1 0 ... 0 0 0 ... 0 0 0 ... 0 from parents of selection
002 0 0 1 ... 0 0 0 ... 0 0 0 ... 0 lines.

OOg000..:100...000...O
100 1 0 0 ... 0 1 0 ... 0 0 0 ... 0 Initial observation of popula-

tion 1.

101 0 1 0 ... 0 1 0 ... 0 0 0 ... 0 Control population if it is un-
102 0 0 1 ... 0 1 0 ... 0 0 0 ... 0 selected population 1.

lOg 00 0.. 110...O 0 0... 0
110 1 0 0 ... 0 1 0 ... 0 0 0 ... 0 Selection line 1 of population 1;
111 0 1 0 ... 0 1 0 ... 0 Zjj 0 ... 0 observation Yiio is deleted
112 0 0 1 ... 0 1 0 . . . 0 0 . . . 0 unless it is different from

. . . ,100.

11gOOO...11O...Ozi0...O
121 0 1 0 ... 0 1 0 ... 0 0 z121 ... 0 Selection line 2 of population 1.
122 0 0 1 ... 0 1 0 ... 0 0 z12, ... 0

12g ..: 1 ... ... 0

200 1 0 0 ... 0 0 1 ... 0 0 0 ... 0 Initial observation of popula-
tion 2.

201 0 1 0 ... 0 0 1 ... 0 0 0 ... 0 Control population if it is un-202 0 0 1 ... 0 0 1 ... 0 0 0 ... 0 selected population 2.

20g000..:101...000...0
etc. etc., similar to above.
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TABLE 3

Computing formulas for sums of squares

Variance source D.F.* Sums of squares Mean squares
Total n Sp2 y'Wy —
Due to J (all parameters) n,, = b'X'Wy =
Residual (error) n — n,, SR2 = 5T2—S22 Q5 = SR2/(— n,)

* n = number of elements of y; n,, = number of columns of X.

TABLE 4

Examples of row vectors (v) for subdividing the sum of squares due to all parameters ($)

Vector elements corresponding to -
Null hypothesis !i.O ' cioo asoo . . . Psi P12

0 0 .0. 1 0 .0. 0 0 .0. 0 0 .0.
oc=0 0 0 .0. 0 1 .0. 0 0 .0. 0 0 .0.

0 0 .0. 1 —l .0. 0 0 .0. 0 0 .0.
0 0 .0. 0 0 .0. 1 0 .0. 0 0 .0.
0 0 .0. 0 0 .0. 0 1 .0. 0 0 .0.

PuPis0 0 0 .0. 0 0 .0. 1 —l .0. 0 0 .0.
0 0 .0. 0 0 .0. 1 1 .0. 0 0 .0.
0 0 .0. 0 0 .0. 1 0 .0. —l 0 .0.

(Pu Pis) (PP) = 0 0 0 . 0 . 0 0 . 0 . 1 1 . 0 . —1 1 . 0

(p11+p12)—(21+P22) = 0 0 0 . 0 . 0 0 . 0 . 1 1 . 0 . —1 —1 . 0.

2.2. Numerical example
For purposes of illustration, a relatively simple case is considered, using

Drosophila fecundity selection data previously given by Richardson (1965)
and summarised by Richardson and Kojima (1965). Each cycle consisted
of the high and low selection lines of two different populations (called Base
and RRS) with each line having about 85 families observed daily for four days
at each generation. The control population consisted of about 72 families
observed daily for four days, and which were taken from a constant set of
hybrid flies obtained by crossing a set of inbred lines selected to have similar
homeostasis and phenotypic variation to the experimental populations. The
average performances of these five groups for days (table 5) formed the
elements of the y-vector. Cumulative selection differentials were used for
the z portions (table 6) of the X-matrix. Figure 1 is a graph of the per-
formances of table 5 plotted against the cumulative selection differentials of
table 6 for the four selection lines, and fig. 3, top, is a graph of performance
versus generations for the control. The initial observations for the two
populations, Base and RRS, were averages of about 170 families observed
daily for four days with the same control as for later generations.

Note that from table 5, we can partition the y-vector into subvectors,
corresponding to selection lines as follows:

Yoo

y11
Y Y12

Y21

Y22
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TABLE 5

Mean egg production

Generation Control Base High Base Low RRS High RRS Low
k = Yook = Yllk = Ylzk = YSlk = Yask =

0 31•95 3427 — 4062 —
I 3663 50•47 4625 47•69 4904
2 43'61 5147 43•15 4870 48•76
3 4073 47•59 4142 48•59 4424
4 3513 38•26 32•79 4382 3668
5 4028 46•34 3639 46•15 4698
6 35•62 39•52 27•98 4434 3243
7 4320 5l20 3922 54•41 4754
8 4071 46•86 31•25 4581 4084

TABLE 6

Cumulative selection differentials, zijk, incorporated in the columns
of the X-matrix corresponding to jj.

Generation Base High Base Low RRS High RRS Low
zj=ll jj=12 j=2l

55 5•7 54 5•6
2 15•2 l34 9.7 124
3 235 201 l50 20•6
4 270 28•7 202 27•7
5 347 358 25•5 34.5
6 445 449 314 400
7 522 54•l 368 456
8 587 629 430 5l6

The weighting matrix, W, is of 43-square dimension, and may be
partitioned to correspond to the various lines as follows:

for Control, JV1 = diag. (1, 1, 1, 1, 1, 1, 1, 1, 1)

for Base High, W2 = diag. (2, 1, 1, 1, 1, 1, 1, 1, 1)
for Base Low, W3 = diag. (1, 1, 1, 1, 1, 1, 1, 1)

for RRS High, W4 = diag. (2, 1, 1, 1, 1, 1, 1, 1, 1)
for RRS Low, W5 = diag. (1, 1, 1, 1, 1, 1, 1, 1)

where

Wi 0 0 0 0
o w2 0 0 0

W= 0 0 W3 0 0 (9)
o 0 0 W4 0
o 0 0 0 W5

The diagonal elements of l's and 2's give the same weight as actual n1j,
where all except two were equal, and these two were twice as large as the
others.

For this example, the X' WX matrix may be partially given for reference,
as below

5.0000 0 ... 0 0
0 5•0000 ... 5•4000 5•6000

• : •. : : (10)

O 54000 •.: 5595:7400 0
0 56000 ... 0 8908•9400
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10 20 30 40 50

CUMULATIVE SELECTION L)IFFERENTIAL

Fin. 1 .—Average egg production per female per day versus
cumulative selection differentials.
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and the inverse

O4872 02448 ... 0•0121 00096
02448 04114 ... 00095 0•0075

(X'VX)—1 = . : . . (11)

00i21 0•0095 ... 0.0010 0•0006
00096 0•0075 ... 0•0006 0•0006

The vector of parameter estimates is

= (30.43, 4060, 4236, 4038, 33•90, 40.41, 33•83, 4564,
40.30, 5•97, 883, 0.0049, —02476, —0•0343, —0•1721) (12)

Note that the first nine values (30.43 to 40.30) are estimates of the , the
environmental components. The "adjusted" means shown in fig. 2 are
the elements of the y-vector (equation 8) minus the ic. The next two
elements of (12) are intercepts for Base Intermix and RRS Intermix, respec-
tively, and the last four values are regression coefficients for Base High and
Low and for RRS High and Low, respectively. The regression lines also
are given in fig. 2. Figure 3, bottom, is a graph of adjusted performance of
the control. The extensive" smoothing" of the curves in fig. 2 obtained by
removal of much of the environmental variation graphically illustrates the
assistance in detection of the responses to selection.

The variance-covariance matrix for the intercepts and regression co-
efficients is

25983 l7685 —00618 —0.0595 —0•0585 —0•0463
27287 —0•0423 —00410 —0•0912 —0•0725

0•0024 0•00l9 0•0020 0.0016V =
(symmetrical) 00022 00020 00016

0.0048 0.0031
00030

An analysis of variance is given in table 7. Only a few of the many
possible individual contrasts are shown. Here the most interest revolves
around the estimates of slopes and the contrasts among them.

TABLE 7

Analjsis of variance for mean egg production

Source D.F. SS MS
Total 43 81,4402054
All Parameters 15 81,30l9326

Intercepts x Populations 1 4555O 456
Base Intermix Divergence 1 3575788 35758
RRS Intermix Divergence 1 584811 5848
Base Intermix Symmetry 1 35 1063 35l 1
RRS Intermix Symmetry 1 149440 1494
Divergence x Population 2 264391 1322
Symmetry x Population 2 08086 0•40

Residual (Error) 28 1382728 494
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FIG. 2.—Adjusted average egg production per female per day versus cumulative selection
differentials; scale same as Fic. 1, but with origin shifted.

For obtaining estimates of genetic parameters, one must consider the
type of selection involved. For example, the slopes estimate realised herit-
abilities. If the selection system was one involving selection of full-sib
families, then either the regression coefficient of a high or of a low selection
line involves one-half the additive genetic variance, while the sum of the
absolute values of the slopes for a high and low line from the same base
population involves all the additive genetic variance. If selection is only in
one direction, the genetic situation which results in asymmetry would not
be detected, and estimates of realised heritability might be biased in either
direction.

3. Discussion
3.1. Generality of approach

The intrinsic ideas of the analysis developed are basically the same for

0 20 30 40 50 60
CUMULATIVE SELECTION DIFFERENTIAL
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short- and for long-term experiments. Certainly for most long-term experi-
ments, the assumption of a linear trend would not adequately approximate
the situation, and appropriate modifications of the model would have to be
made. In fact, the data for Base Intermix (especially Base High) suggest that
the linear trend might be inadequate for some short-term experiments,
regardless of whether the model used is linear or non-linear. Comments
regarding the stochastic nature of the process still hold, and the desirability
of replicated experiments still exists.

Fio. 3.—Comparison of control average egg production per female per day with the adjusted
average egg production (origin shifted).

A possible way of characterising a non-linear trend is to introduce
quadratic, cubic, etc. terms in addition to the linear ones. Although the
polynomial approach could be descriptive of the data over some ranges, from
the viewpoint of genetic analysis such a description is sterile. It is therefore
appropriate to consider non-linear models for a trend which have a basis in
genetic theory.

3.2. Some possible non-linear alternatives
3.2.1. Models which disregard linkage and epistasis. For short-term experi-

ments, the linear model assumed in the foregoing theory and example
ordinarily will be adequate. However, for long-term experiments, models
such as that of James (1965), namely

= /L+KPX (O<p<l; K = (14)

3 4
SELECT0N CYCLE
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or the more specialised one of Frahm and Kojima (1966), i.e.

jc(l—e) (>0; e =p) (15)

might be used. These models replace the intercept and slope terms of the
models, illustrated in the present development. For statistical analysis,
iterative weighted least squares techniques would be required for estimating, ic, p of (14) or fi of (15).

3.2.2. Models which consider genetic recombination and epistasis. Responses
have been observed which are not hyperboloid in form, as required by models
(14) and (15). For example, a "stair-stepped" response was observed by
Mather and Harrison (1949) which probably was a result of recombination
of tightly linked loci releasing concealed genetic variation after a considerable
delay.

Similar effects could occur in short-term experiments, thus requiring
replacement of the straight line by some other functional form. This pos-
sibility was pointed out for Base Intermix, and is supported by subsequent
observations (Richardson, 1966 and unpublished). Models for substitution
in place of the straight line cannot be suggested. Any such used, however,
should be developed from genetic premises.

4. SUMMARY

1. An improved regression approach for the analysis of selection experi-
ments is described. The specific formulation presented in detail is particularly
useful for studies designed to measure genetic variation that is immediately
available for "short run" response.

2. Extensions of the analysis for non-linear response and replicated tests
are discussed.

3. The major statistical improvement in the analysis lies in the estimation
of environmental effects from one generation to the next using all the informa-
tion available in the data. Consequently, estimates of genetic effects are
more efficient.

4. The method enables the estimation of a point of common origin
(intercept) for several selection lines arising from the same base population.
As a result, the experiments may use a priori knowledge of the origin of
selection lines.

5. Genetic progress is estimated separately for each line. Thus, with
replicated selection lines, it is possible to estimate stochastic aspects of a
genetic nature in addition to environmental fluctuations affecting estimates
of response.
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