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1. INTRODUCTION

THE formula giving the probability of survival of a new mutant allele at a
locus homozygous for some other allele has been known since the pioneering
work of Fisher (1922). Whether or not the new mutant survives will depend
almost exclusively on the behaviour of its frequency during the critical early
generations; for this reason we ignore the possibility of formation of homo-
zygous mutants and refer then to heterozygous mutants as mutants. If a
mutant produces i viable mutant offspring with probability J and if
f(s) = then the smallest positive solution of

s =f(s) (i.i)
gives the probability of extinction of the mutant. This is less than unity if
and only if / exceeds unity.

When more than one allele is present at the locus when the mutation
first occurs the situation is more complicated. The survival probability will
depend not only on the fitnesses of the various genotypes but also on the
frequencies of the various alleles present and on the genotype initially
formed by the mutant. In this note we derive survival probabilities in such
a situation.

2. SURVIVAL PROBABILITIES

Consider a locus at which, at time zero, occur alleles A1,. . ., A. Assume
that the fitness of A1A is wand that the frequencies of the various genotypes
occur in Hardy-Weinberg proportions, the frequency of A being p. We
denote the mean fitness of the population at the time the mutation occurs
by W, where

w = Wi:iPiPj.

Suppose now that at time zero a new allele B is introduced at the locus in
question; let the fitness of AB be . Ignoring for the moment stochastic
fluctuations, the frequency x of B in successive generations changes according
to the formula

x(t+I) = [(p1L)/I'V]x(t), (2.1)

a result given by Bodmer and Parsons (i 960). Clearly the frequency of B
will increase deterministically only when exceeds W, that is when the
mean fitness of heterozygotes formed by the mutant exceeds the mean fitness
of the original population.

We now consider the case where the exceedingly small frequency of B
requires a stochastic treatment to be made. For this purpose we shall
suppose that the population is in size equilibrium (i.e. W = i), although
this convention is made essentially for notational convenience and can easily
be relaxed.
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Suppose that after t generations the number of A1B individuals is
n1 (1)(i = i, . . ., Ic). Then the gene B will be transmitted, on an average,
to offspring from each A1B individual and each such gene will combine
with an A1 gene, with probability p1, to form an A5B individual. Clearly

E{n5(t+i)} =p5Ejn(t), (j = . . ., Ic) (2.2)
where E{.} denotes the expectation operator conditional on given values at
generation t. In matrix terms the system of equations (2.2) may be written

E{n(t+x)} = Mn(t), (2.3)
where the matrix M is given by

M=pp', P'=(P1,..Pk), 1U'(j2j,...,p4).
To obtain survival probabilities it is necessary to know not only expected

values, as given by (2.2), but the complete distribution of the number of
viable -B offspring from each A1B parent. If the generating function of this
distribution is denoted J(s), then we require that j(x) = i fl(i) =
Any such offspring from an A1B parent is A5B with probability p5; if then
we use the dummy S to refer to A,B, the probability generating function of
the number of such offspring from an A1B parent, where account is taken
of the type of offspring, is

f1(p1s1+... +PISI). (2.4)

The interpretation of this function is that the coefficient of . . . 4 in its

Taylor expansion is the probability that an A1B parent produces a1 offspring
which are A1B, . . ., a1 which are A1B. We can now use the following
theorem given in Harris (1963, page 41).

Theorem. The probability that the new mutation B survives exceeds
zero only when the largest eigenvalue of M (in equation (2.3)) exceeds i.
In this case, if s is the probability of ultimate extinction of B when the
initial mutant is AB, then the quantities s, . . , S, are the unique positive
solutions (less than unity) of the set of equations

s =f(p1s1+ . . . +P1s), (i = . . ., Ic). (2.5)
Because of the special nature of M and the generating functions (2.4) it is
easy to find the consequences of this result. Because of the form of M
(i.e. M = pp'), M has rank i and hence only one non-zero eigenvalue.
This eigenvalue must then be identical to the sum of all eigenvalues, that
is to the trace (sum of main diagonal elements) of M. But

trace M =
so that the new mutation can survive only when exceeds unity (or
more generally, exceeds W). If this is the case, we can solve the system of
equations (2.5) quickly by multiplying the ith equation by pt and adding.
Putting s = Ep1, s then solves

S = pJ(s). (2.6)
Often s is the quantity of interest, since it may not be known what individual
was the initial mutant, so that the weighted survival probability Eps
(p being the probability that the initial mutant is A1B) is required. In any
case individual; values can be obtained immediately from (2.5), i.e.

; =J(s), (2.7)
where now s is the required solution of (2.6).
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In any particular case, equation (2.6) provides a satisfactory formula for
numerical evaluation of s. It does not seem possible to draw general
conclusions from this equation, although some fairly general remarks can
be made in particular cases. For example, Haldane (1927) has shown, in
the case Ic = i, that if p is only slightly greater than i, so that the new
mutant is only slightly more fit than the wild type, then

(2.8)

where a2 is the variance of the offspring distribution fr(s).
In the present more general case we may obtain a similar result when

each is only slightly greater than i. Then both s and s, (J = i, . . ., Ic)
will be close to i, so that expanding jfj(s) in equation (2.6) about s =
we get, to a close approximation,

s =
so that s—s — 2[L—i]/a2 (2.9)

where jl = Pjj, &2 = p1a. This generalises Haldane's result (2.8).
Individual s values may be obtained by a similar expansion of (2.7) to get

i —s = (i—s)j—(x —s)2a, (i = i . . ., Ic). (2. so)

3. POISSON OFFSPRING DISTRIBUTION

If we make the common assumption that the offspring distributions
J(s) are Poisson we can obtain further results. Here (2.5) becomes

s1 = exp [/41(Pjsj+ . . . +P,s—i)], (i = . . ., Ic). (.i)
Considering rather survival probabilities r1 = i —s, we get

i—in = exp—[,11(P17r1-1-... +PklTk)I
= exp (—ir), (i = i, . . ., Ic). (3.2)

Here ir = pr1. Equation (2.6) becomes
= exp (—ir). (3.3)

It is interesting to note that the value of ir obtained from bears an
interesting relationship to that obtained if we do not carry out the above
multiple-type theory, but use as an approximation previous theory with the
fitness of B being The survival probability ir calculated from the
latter method would solve

= cxp (_ir*Zpjj).
For any given p1 and values for which >1, let the solution of
be x. This will be greater than or equal to the solution of if the function

i——p1exp (—ir),
evaluated at r = x, is negative or zero. But this will be the case if and
only if

exp (—xp11)p1 exp (—xjz1).
But this inequality is always true, since the left-hand side is a weighted
geometric mean of the positive quantities exp (—x,) while the right-hand
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side is the corresponding arithmetic mean. The latter will always exceed
the former except in the limiting case when the are equal, when they
coincide. We conclude that the approximation using (3.4) will always
overestimate the true mean survival probability when the are not all
equal.

A second conclusion derived from is that ir is not a linear function,
and not necessarily an increasing function, of Thus it should be
possible to find two cases, in one of which the value of exceeds the
corresponding value in the second, but for which the value of ir is less than
that for the second. We provide the following example:

Case A. iL = = 1.5,,2 arbitrary.
Here Ifl1L = P5, iT = O5828I.

Case B. = i, !-2 2, f1 = O429, p2 = 0.571.
Here 2PaLj = t.571,

exceeding the corresponding value for case A, while

In = 044I22, IT = 0.687765, IT 0582,
which is less than the corresponding value for case A.

While this result shows that is not the only relevant quantity for
determining survival probabilities one suspects that in the vast majority of
cases increasing increases IT.
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