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1. INTRODUCTION

A popruLATION of fixed size is considered in which mutation at a fixed
rate occurs, each new mutant being regarded as an entirely new type.
The number of different alleles occurring in any generation is a random
variable, and the problem is to determine the mean number of different
alleles when the process is in * equilibrium . An explicit formula is
available only in the simplest cases, and the aim of the present paper
is to find an approximation for this number by a Monte Carlo experi-
ment, in which the behaviour of the population is simulated on a high-
speed computer. Two cases are considered; firstly that of selectively
neutral ““ normal ” alleles, and secondly that of a self-sterility popula-
tion exhibiting a breeding structure like that of Oenothera organensis. The
former case is of interest because it is the only one for which an explicit
formula has been obtained, while the latter is of interest because of the
mathematical discussions which have been made to derive an expression
for the mutation rate necessary to maintain the large number of alleles
observed in this species.

2. MATHEMATICAL THEORY

If we consider a diploid population of size &, then with a mutation
rate u to entirely new alleles we expect 2Nu new alleles on the average
per generation. At equilibrium these new alleles will be balanced by
a similar number of ““ old ” alleles being lost from the population by
drift and /or mutation. If| in equilibrium, there are 7 different alleles,
on the average, in each generation, and if the mean number of genera-
tions for which any allele exists in the population is 7, then the relation

oNu = 7ff (1)

will express the required balance between new alleles being formed and
“old” alleles being lost. Thus once an expression for 7 can be
found, the value of 7 follows immediately.

It may be the case that # is not a well defined quantity, in the sense
that no absolute value of { may exist. For example, if selective differ-
ences are allowed in the population, then the mean time that any
newly formed allele will exist will depend on its selective value, as
well as the selective values of alleles currently in the population. This
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will effectively be the case for self-sterility populations, and the analysis
of such a population must therefore incorporate some approximations
and assumptions in the hope of obtaining a reasonably exact result. For
selectively neutral populations, on the other hand, once a model has
been specified the value of ¢ is well defined and applies irrespective of
the composition of the population when the new allele appears. In
order to fix ideas we now consider briefly this simple case.

The model we use is a particular case of that introduced by
Wright (1931). If at any time the number of genes of a particular
allele is 7, then in the next generation we expect ¢(1—u) genes of this
allele, the decrease —iu being due to mutation. The model is then
that the probablhty bij that the number of genes of this allele changes
from 7 to j in successive generations is given by the expression

(2N )(2 —zu)f (2N ""H“)ZN—J ...... (2)

We note that the expression for p,;, apart from the constants z and N,
involves only ¢ and j, so that the variable under consideration is
Markovian. Since the initial value is necessarily unity, there will
exist a definite value { for the meantime for the number of such alleles
to reach zero, an event which will happen eventually. Further, if we
define 7,, as the mean number of generations for which the number of
genes of the allele in question assume the value m, then 7 = #,+¢,+...
4%, and equation (1) takes the form

o= oNu[f,+E+...+80]. .l (3)
The values (¢, ,,..., {35) have been called (Ewens (19644) (1965)) the

pseudo-transient function of the process under consideration. The
exact value of 7; is at present unknown for the model under considera-
tion, and the best that can be done is to approximate (3) by the
corresponding diffusion expression

1

i = 4Nu f M1 —x)4e -y, L (4)

@)

which is valid for all practical purposes when u is at most of order V-1,
The expression (4) was first given in Ewens (19645).

For the self-sterility population the analysis is not nearly so easy.
The expression for p,; will strictly depend on the frequencies of all
genotypes present in tfle population, and if there are (say) 45 different
alleles there will be ggo different possible genotypes. A strict analysis
would therefore require joint examination of all ggo variables, which is
impossible, and the real problem is to find suitable approximations so
that a univariate analysis can be made. Further, if a diffusion approxi-
mation such as (4) is to be used, all that is necessary is to find suitable
approximations for the mean change Ax and the variance o}, of the
change of the frequency x of the allele in question in successive genera-
tions.



MAINTENANCE OF ALLELES BY MUTATION 373

There has been some discussion (Fisher, (1958), Wright (1g6o0),

(1964)) of suitable approximative formulae for Ax. By far the most
work on this problem has been carried out by Wright, whose formulae
are without doubt extremely satisfactory (see for example, Wright
(1960), pp. 66-68). So far as an expression for o, is concerned, the
value originally used by Wright (Wright, 1939) was x(1—x)/2/N. This
was altered to x(1—2x)/2N (Wright, 1960) following Fisher (1958),
and rechanged to x(1—x)/2/N (Wright, 1964). The incorrectness of
Fisher’s formula was pointed out by Ewens (1964¢), but so far as the
subsequent analysis is concerned, the frequency # is generally sufficiently
small to make either expression for o, a reasonably close approximation
to the very complicated exact value.

We shall discuss the analysis of Wright (1939, 1960, 1964) and the
criticisms of it in more detail in a later section. For the moment we
note that the expression for the equilibrium number of alleles main-
tained will be of the form (3), where the #; constitute the pseudo-
transient function of the process, and that the diffusion approximation
to this will be of the form

1

i = 2N f txdx e (5)

where £(x) is the diffusion approximation to the psuedo-transient
function.

3. NUMERICAL RESULTS

It was noted in the previous section that an exact mathematical
discussion of the behaviour of the self-sterility population is extremely
difficult, and for this reason it was decided to simulate the evolutionary
progress of such a population with a high-speed computer. At the same
time a programme was run for the selectively neutral case to test the
adequacy of the formula (4). Further, for both populations, besides
the random mating case, a simulation was made for which a high degree
of geographical inbreeding was allowed.

The details are as follows. The population size was 500, allowing
1,000 genes at the locus under consideration. The mutation rate was
1073, the mutation being deterministic in that one new mutant was
formed in every generation (this should cause negligible difference to the
stochastic mutation case). This mutation rate is, of course, very high,
but more realistic values would give no better values for testing the
validity of the formulae under consideration and would require larger
populations and longer computer times than could be handled. The
process was stochastic in that the genes making up any generation were
selected at random (using a random number generator) from those of
the previous generation according to the model (2) (or its counterpart
in the sterility case). So far as the geographical inbreeding case was
concerned, the population was divided up into 25 sub-populations with
20 individuals in each. With probability 0-9 an individual was mated
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with an individual from the same sub-population, and with probability
o:1 from the population at large (including the same sub-population),
giving a total probability of 0-go4 of mating with an individual in the
same sub-population. The only exception to this rule was that in the
sterility case, if it proved impossible after 10 attempts to find a suitable
mate in the sub-population (which would only happen very rarely) a
suitable mate was chosen from the population at large.

TABLE 1

Number of generations for which the number of alleles assumed the
indicated values in 800 consecutive generations

Neutral population
Number of alleles 5 6 7 8 9 10 I 12 13
Inbred case 2 1 13 30 45 55 71 70 94
Random case o 0 4 15 38 82 118 139 121
Number of alleles 14 15 16 17 18 19 20 21 Total
Inbred case 110 86 73 69 47 25 7 2 8oo
Random case 110 8o 58 21 I 2 1 o 8oo

Sterility population

Number of alleles | 22 23 24 25 26 27 28 29 30 31 32 33

Inbred case o o o 13 26 20 29 37 53 61 65 115
Random case 5 15 85 62 51 67 65 9o 129

N
[=2]

Number of alleles| 34 35 36 37 38 39 40 41 42 43 Total

Inbred case 125 91 69 59 23 12 2 o o
Random case 93 68 45 31 11 6 8 6 2 2 B8oo

In all cases, both neutral and sterility populations were started with
twenty different alleles. The results obtained indicated that after
200 generations equilibrium behaviour had been reached. All popula-
tions were then run for a further 8oo generations. The numbers of
generations for which the number of alleles in the population assumed
various values in the 8oo equilibrium generations are displayed below
in table 1.

It is found from table 1 for the random mating case that the mean
number of alleles maintained in the normal population is 12-66 and
for the sterility population 32-18. For the inbred case the mean num-
bers are 13-52 and 32-88 respectively. Further, more detailed informa-
tion about the composition of each generation showed that in the normal
case, generally speaking all but two or three alleles occurred quite
rarely (less than 10 times in a population of 1,000 genes), whereas in the
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sterility case most alleles which were present at any time occurred in
reasonable numbers. As an example of this, in the final generation in
the random breeding case there were 10 normal genes and 29 sterile
genes. Of the 10 normal genes, only three occurred more than ten
times, whereas of the 29 sterility genes, twenty-three occurred more than
ten times.

So far as verification of equation (4) is concerned, with N = 500,
and u = 10~% the right-hand side in (4) becomes 2 log, 1,000—2
= 11-82. This is in reasonable agreement with the empirical result
12'66. For the sterility case, Wright’s table (Wright, (1964), page 618)
for u = 103, N = 500 gives approximately go alleles which, consider-
ing the number of approximations needed in deriving the table, is in
excellent agreement with the empirical value g2-18.

It is also quite clear that rather severe geographical inbreeding has
a minor effect on the number of alleles maintained. This is in general
agreement with the sort of result obtained from different arguments by
Moran (1962, page 178).

4. WRIGHT'S ANALYSIS FOR THE STERILITY POPULATION

The above numerical value for the sterility case agrees with that
predicted by Wright’s analysis (1939, 1960, 1964). It is therefore of
some interest to consider thisanalysis together with criticisms whichhave
been made of it (Fisher (1958), Moran (1962), Ewens (1964c)). So
far as Fisher’s analysis is concerned, the method of approach is generally
similar to that of Wright, and it seems difficult to justify his claim that
his results are very different from those of Wright and that his discussion
clarifies that of Wright. Fisher’s formula for the number of new muta-
tions required per generation to balance losses is

V' Njamexp (—aNo?), ... (6)

where o can be taken as approximately 7-1. In the case 7 = g2,
N = 500, formula (6) gives about 3-36 mutations per generation, com-
pared with the true value of one per generation. Wright’s values seem
to be far more accurate than Fisher’s.

The criticisms of Moran (1962) and Ewens (1964¢) are more basic
and can be considered together. Moran has pointed out the non-
Markovian nature of the frequency of any allele and the crude nature
of the approximations necessary to find a Markovian variate. This
criticism involves formulae used for Ax, and is a valid one, the answer
to it being that the numerical example, above, shows that the approxi-
mations are far better than could reasonably be expected. Moran’s
main criticism is the use of a stationary distribution formula for de-
scribing this process, a criticism also made by Ewens (1964¢) and which
will be considered later. The first criticism of Ewens (1964¢) was that
an incorrect formula for variance was used by Wright (1960). This
criticism is effectively met by the use of the more correct formula by
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Wright (1964). It may be useful, in connection with this, to point out
that use of the formula 02, = x(1 —x) /2N does notimply an * apparently
incorrect range ”’ to the variable x (which is restricted to (o, 3)) as
has been asserted by Wright (1964). This is because the variance
formula is not the * usual binomial variance ” since the reproductive
system is far more complicated than one leading to such a simple
formula. The fact that when the number of alleles is large the variance
happens to reduce approximately to x(1—x) /2, the binomial formula,
is coincidental. In fact for three alleles the correct formula is
#(1—%) 4V,

The second criticism of Ewens was that it is not justifiable to use
diffusion approximations (analogous to equation (4)) for self-sterility
populations, since the conditions required for their application do not
hold for such populations. For details of this point, see Ewens (1964¢).
Despite the validity of this criticism, the answer to it is apparently that
although one is not justified in using diffusion formulae, these formulae
nevertheless give reasonable answers when applied formally in the case
considered. This is possibly fortuitous as in other problems it can be
shown that diffusion formulae, when used inappropriately, lead to
extremely incorrect results. Thus the belief of Ewens (1964¢) that
“ use of diffusion methods has led to very inaccurate results for self-
sterility populations”, while justifiable on general terms, is not in fact
true in this case.

The third criticism concerns the use of stationary distribution
formulae, and this turns out to lead to a most remarkable feature of the
analysis. Any newly formed mutant allele will in general not last
more than a few generations in the population. Using the formula
(1) and the numerical results of the previous section, it appears that any
newly-formed mutant allele survives, on the average, for about 32
generations. Even this figure is misleading since the detailed numerical
results, not presented here, show that the majority of mutant alleles do
not survive more than five or ten generations. This makes it clear that
it is meaningless to refer to a stationary distribution of any allele. The
discussion of Wright (1964, page 611) misses the point of this criticism,
since it refers to the eventual dying out of the whole population (which
admittedly will take an enormous time) rather than the dying out of
the line initiated by a single mutant (which will generally take only a
few generations). The relevant transient behaviour of the population
is described by the pseudo-transient function.

Even if the mean time until the line initiated by a mutant dies out
is very large, it should be pointed out that formal application of the
stationary distribution formula in no way describes the transient
behaviour of the frequency of the mutant. The best example of this is
provided by the model (2) in the case u = o. There are two functions
which describe, in different senses, the transient behaviour of the
frequency x = i/2/V of the allele in question. The first of these, called
the asymptotic conditional distribution, is the conditional distribution
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of x, given x is not zero or unity, asymptotically as time increases. This
distribution is given, to a close approximation, by

Silx) =1, o<x<I. ... (%)

The second function is the psuedo-transient function f,(x), having the
property that

[ Auteyas

is the mean time that x assumes a value in the range (x,, x,) before being
absorbed at zero or unity. This is given to a close approximation by

fil#®) =201—p)[(1—x) o <x=p )
— ap/x p=x<1 U

where p is the initial value of x. Finally the function f3(x) derived by
formally applying Wright’s formula for stationary distributions is

S3(x) = const/x(1—x), @N)-1=x=1—(N)-L ... (9)

It is clear that in no way does (g) resemble (7) or (8), and does not
describe, in any sense, the transient behaviour of the process. This is
true no matter how large N is, that is how long the mean time to
absorption at zero or unity may be. It is this fact which underlies the
criticisms of Moran and Ewens concerning formal use of stationary
distributions in cases where there is no sort of stationary behaviour
whatever.

The remarkable fact referred to above concerning the analogues of
(8) and (9g) in the context of the self-sterility problem, and which ex-
plains the numerical accuracy of Wright’s values for the mean number
of alleles maintained, is that the analogues of (8) and (g) happen to
agree in algebraic form over the part of the range which is really
important. In general, if the mean change in x and the variance of
this change in successive generations are Ax and o7, respectively, then
the general formula for the pseudo-transient function when there is
one-way mutation from the allele in question to other alleles, is

B N - —
fm=gﬂpszm@”w{4Wmdﬂ@

Ax L J 4
O0<X=P .. (10)
c [ 0
=2 eXp| 2 AD)ogydy | pWx =1
Ax L J

where p is the initial value of ¥ and 4, B and C are constants whose

exact values need not concern us. It will be noted that in the range

(p, 1), this formula happens to coincide with Wright’s formula for

stationary distributions, and since in this case p = (2/V) -, this agree-

ment in algebraic form extends over practically all the range of the
2B
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distribution. It must be emphasised that this agreement in algebraic
form does not imply any agreement in interpretation, but does imply
that formal use of stationary distribution formulae, in this case, should
lead to numerically satisfactory results. It is this remarkable coinci-
dence which justifies use of Wright’s table (1964, page 618) for the
number of alleles maintained in a given population.

Using this table, and the observed negligible effect of rather close
geographical inbreeding, we now confirm properly the conclusion
reached by Wright and Fisher, that the explanation for the occurrence
of 45 different alleles at one locus in a population of 500, with mutation
rate of order 108, is a recent reduction in the population size from
about 10,000 to 500.

5. SUMMARY

The number of different alleles maintained on the average by a
given mutation rate in various populations is considered. For the
selectively neutral case, numerical values agree very well with theoretical
predictions. The same is true of self-sterility populations, despite
criticism of Wright’s analysis for the latter case. This analysis is again
reviewed and it is found that the main criticism of it, namely the use of
stationary distribution formulae in a situation where there is no concept
of stationarity, is justified. However it happens that the correct
distribution agrees in algebraic form with the inapplicable stationary
distribution over most of the range, so that use of the stationary formula,
while quite unjustified, happens to lead to satisfactory numerical results.
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