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1. INTRODUCTION AND DESIGN OF EXPERIMENTS

SEVERAL methods have been devised to estimate the components of
variation in plant and animal populations, and associated with these
niethods has been controversy about their relative usefulness and
efficiency. The present experiment was designed as a first step towards
their practical evaluation.

In general these methods have evolved by the adoption and
subsequent extension of crossing designs traditionally used by breeders,
and involve the calculation of the variances and covariances of relatives.
On the basis of some model of the genetic system, expected values are
derived for these second degree statistics in terms of genetic and
environmental components and by equating the observed statistics
with their expectations, a series of simultaneous equations can be
obtained whose solutions produce estimates of these components of
variation.

The various designs in existence show a great range in the ratio
of parents to progeny families, i.e. for the same number of progeny
families produced, some designs require the use of many more parents
than do others. The five designs used in the present experiments
were chosen because between them they cover the whole of this range,
and also because they have been widely used or discussed.

In the present experiment these five designs have been applied
simultaneously to the same basic plant population with the one
restriction that the number of crosses, including selfs. in each should
be approximately the same. For practical reasons this number was
fixed at about 45. Thus the designs can be compared on the basis
of their return in terms of information yielded, for the same outlay in
terms of work involved,

The techniques used were as follows
(i) Biparental Progenies (B.I.P.s). This involves using n plants as

parents and crossing them in pairs (taken at random) to yield n/2
progeny families. As it was decided that the number of families should
be 45, 90 parents were used, and since this was the largest number of
parents used by any design the population size was thus fixed at
90 plants.
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(ii) The Xorth Carolina Design i (.N.C.M.z.). (Comstock and
Robinson, 1952.) In this each plant used as a male parent is crossed
to n female parents, no female taking part in more than one mating.
Thus there are m +mn plants used, m males and mn females yielding
mn progenyjamilies. Several values of m and n are possible within the
restriction that mn should be approximately 5. However, the design
was originally devised for situations in which the supply of female
parents is greatly in excess of males, and hence it seemed appropriate
to test this method when n and n were widely different. For this
reason 4 male parents were each crossed to ii female parents, so
producing 44. progeny families from 48 plants.

(iii) The Partial Diallel Cross. (Kempthorne and Curnow, 1961.)
This involves only certain crosses from all those possible between ii
plants used as both male and female parents, omitting selfs and
reciprocals. In a full diallel cross with the same omissions there arc
n(n—i) crosses, the number of crosses increasing rapidly with n, the

number of parents used. In the partial diallel the breeder need only

use crosses, where s is a whole number equal to or greater than 2

and n and s cannot both be odd.
In the present experiment n was fixed at 14 and s at 7 yielding 49

progeny families from 14 parents.
(iv) The Vort/z Carolina Design 2 (X.C.M.2). (Comstock and

Robinson, 1952.) Here all the mn progeny families, obtained from
crossing m males to n females, are raised. It was convenient in the
present experiment to have equal numbers of male and female plants
such that m n = 7, mn = 49. Thus as for the partial diallel 49
progeny families were raised from 14 parents.

(v) The Half' Diallel Cross. This is the most restrictive of all the
designs tested as it involves all the possible crosses between ii plants
used as both male and female parents, but without reciprocals, i.e.
n(n+i)

2
matings (Jinks and Hayman, 1953; Hayman, 1954; Jinks,

1954; Dickinson and Jinks, 1956). A sample of 9 parents was taken
and 45 progeny families were raised from them.

There were thus 232 families produced by the five designs. The
90 plants constituting the basic population were all selfed, so giving
322 families altogether. The parents required for each of the foui'
designs (ii)-(v) were drawn separately, and at random, from the basic
population.

The experimental design consisted of 4 completely randomised
blocks, two blocks being sown on ioth April 1963 and the remaining
two 23 days later. Each family was represented by 5 plants per block,
all ,6io plants being individually randomised within each block from
the time of sowing. Altogether 6440 plants were grown in 1963.
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Several factors were considered in evaluating the designs, the most
important being the components of variation each yielded. Other
criteria were also used such as the number ofparents used, the available
tests of the basic assumptions, the range of breeding material for which
they can be used, the number of statistics which could be obtained and
the labour involved in computation.

2. MATERIAL

The long head poppy, Papaver dubium was used for the experiment. It is a hexa-
ploid (2n 42) but regularly forms bivalents at meiosis, and hence probably
behaves effectively as a diploid. Seed counts suggest that it produces seeds as readily
on selfing as on outcrossing, and there is no reason to believe that it does not outcross
widely in the wild, although detailed information is lacking about this.

The particular population used, 52A, was derived from plants collected 7
years ago on the University of Birmingham campus. The go parents used in this
investigation and grown in 1962 were a random sample of the progeny of a biparental
crossing programme carried out the previous year to simulate random mating.

Although this species is very variable morphologically much of the variation is
difficult to quantify. The most suitable character, and the one in fact used here,
was flowering time measured in days after i3th June, the date on which the first
plant flowered.

3. ASSUMPTIONS AND NOTATION

The following assumptions are involved in deriving genetical
interpretations from the designs studied.

(i) Regular diploid behaviour at meiosis. Since P. dubium regularly
forms bivalents at meiosis this assumption is most probably valid,
although it is not possible to exclude polysomic inheritance with random
chromosome assortment.

(ii) No maternal effects. In the present experiment N.C.M.2
provides a test of maternal effects.

(iii) No linkage. Failure of this assumption will upset the analyses
only if statistics of two or more ranks are used. Statistics of rank i
and 2 are in fact brought into all the analyses shown except for the
Hayman analysis of the diallel cross (see later).

(iv) No non-allelic interaction.
(v) No genotype-environment interactions.
(vi) No multiple alleles.
(vii) Uncorrelated gene distributions.
Assuming random mating and unequal gene frequencies, three

principal notations exist to designate the components of variation, all
of which are simply related to the basic formul set out by Falconer
(1960) and Jinks and Hayman (ig) (see table i).

For consistency in presenting the results from the various designs
the components are defined as far as possible using Mather's notation
(i94g). However, certain statistics in the half diallel can only be
described by the Dickinson and Jinks (i,) elaboration of this
system.
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Heritability (h2) is measured in all cases by the ratio of additive
to total phenotypic variance, i.e.

or
VP DR+±IjR+nE,

(i.e. heritability in the narrow sense). The genetic component
heritability in the broad sense) is, of course

or DR+HR
V ?,DR+HR+nE

TABLE i

The relationship between the various notations used in this text

General formuhe Mather Lush, Lerner and Falconcr Dickinson and Jinks

4uv[d+h(v—u)]2 DR 2VA D,+bHI—lHu--- F,
i6u'2h2 HR 4\L) Hu

Ee2 nE2 nE2

4. RESULTS

The original data are set out in the form of family means in the
appendix. The results from each design have been analysed by the
methods suggested by their repsective authors. The general form of
each analysis and its interpretation are described in this section, and
a comparative evaluation of all designs is presented in section .

Because of the difference between the two sowing times it was
decided to analyse the data from them as different experiments in
all cases and the results are shown in this form. Such an approach is
justified and indeed required by the marked difference between the
variances at the two sowings, those plants raised from the earlier sowing
being approximately twice as variable as from the second.

As several plants failed to reach maturity some families contained
only 4 or even 3 plants. The average variance within families was
calculated by summing the sums of squares (SS) and the degrees of
freedom (d.f.) from each family and dividing the former by the latter.
All other statistics were calculated on five times the family means,
i.e. assuming 5 plants per family.

(I) B.1.P.s (Appendix A)

Although 45 matings were made between the 90 parents, two failed
to produce viable seed, and the results shown are thus based on only
43 families.

Two statistics only can be obtained from this design—the variation
within and between B.I.P. families. Comparison of these two statistics
(table 2) shows the latter to be very significantly greater than the
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former, at both sowings, so demonstrating the presence of genetic
variation in the population.

The numbers in the column headed v indicate which variances
were used in the denominator of each x2 or variance ratio test, and

TABLE 2

Analysis of &ariance of B.I.P. data

Sowing i

Item d.f, M.S. v X2
Expectation of
mean squarec

1. Between families
(F) . . .

2. Blocks (B) . .

3. FXB. . .

4. Within families .

5. Pookd within
families (2, 3, 4) .

42
I

42

329

372

15713
1505
5060
4961

4963

4

4
4

133.14
<1
4284

<0001
N.S.
N.S.

U+5O1+10O
+5O1+2I5ç

U+5o
2o

Sowing 2

1. Between families
(F)

2. Blocks (B)

3. FxB.
4. Within families. Pooled within

families (2, 3, 4)

numbers ascribed to the various items in the first
column of the table. Because of the large size of the degrees of freedom
attached to the variance within families, no great advantage would
be obtained from pooling any non-significant interactions with this
component for the purpose of significance tests. Non-significant items
are, however, pooled for the purposes of estimating o. This approach
will be used throughout.

The expectations of mean squares in this analysis can be inter-
preted as follows. The item is the mean variance of families,

or VSBIP3, and cr is the variance of family means, or

V13J,3 as defined by Mather (ig) i.e.,
(T lfl .T-T L1'BIP — 4 Rmlo 2

— IB1Pi Rmls R
where n = family size = 5.

0

Item d.f. M.S. x2 P Expectation of
mean squares

4

4
4

42

42

334

377

12264
<1
<42

6692
1452
18.44

229I

2269

<0001
N.S.

N.S.

a+5c+ IO

correspond to the
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As there are three parameters and only two statistics from which to
estimate them, it is necessary to make the added assumption that
there is no dominance, i.e. HR = o, or to accept that DR is a compound
measure of D and H, such that:—

VBIP +nE2
V = DR.

The values VBIP, DR and nE2 obtained from the above analysis
of variance are shown in table 3 together with the heritabilities.

TABLE

Components of variation and heritabilities from B.I.P.s

Sowing I Sowing 2

1075 Vj' 442
VBIP 4963 VBIP 2269

V (Tot2l) = 6038 V (Total) = 2711

IDR = 2150 DR = 884
nE2 = 3888 nE2 = 1827

036 /12 033

Evidently some 30 per cent. of the variation in the population is
under additive genetic control. This, however, is an approximation
which becomes more accurate as HR tends to zero.

By this method the variation can only be approximately partitioned
into genetic and environmental components and no information
concerning the nature of the genetic component is available.

(ii) North Carolina Model I (Appendix B)

This design provides a third statistic which is not available from
the B.I.P.s, since we can now recognise families with a common father
(paternal arrays). Comstock and Robinson (1952) suggest the follow-
ing analysis of variance of the data to give comparisons between
males, between females within males, and within families (table 4).

From these analyses it can be seen that the items M and F are
significant, i.e. both a and a are greater than o. These expectations
of mean squares have genetical significance as shown below (see also
Falconer, 1960) and estimates of the components are presented in
table 5.

= Coy (H.S.) = DR
= Coy (F.S.) —Coy (H.S.) = DR+HR

a =Vp—Cov (F.S.) = D+jHR+nE.
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In estimating the values of cr2, the relevant non-significant items
were pooled, e.g. in Sowing I items 3, 4 and 5 are all estimates of o
and hence were combined to give a value cr1, of 347 I.

From this analysis it would appear that approximately 70-80 per
cent. of the variation in flowering time is genetically controlled, and

TABLE 4

Analysis of variance of JVIC.M.r data

Item df. P V.R. p EXpeCtt1ofl0f =

Sowing i ,i. Between males (M) 3 76143 2 5.49 <001 a,+5j6155O4
-1- I0a± I l0e

2. Between females 40 13863 5 15226 <0001
within males (F) I

3. Mx blocks . . N.S. a+5076- 55a

4. Fxblocks . . 40 1984 5 <40 N.S.

5. Within families . 336 3642

Sowing .,i. Between males (M) 3 21409 2 306 <005 c;+5a74±55a;6
+J0c7± I

2. Between females 40 6995 4 248 <0005 a+5O75±55a
within males (F) . + I0a

3. Mx blocks . . 8oa 4 <i N.S. a+5cr5+55a

4.Fxblocks . . c 2816 6o <002 a2+S
5. Within families 336 1876

I

that this variation includes both additive and non-additive com-
ponents. In the absence of interaction the non-additive components
could be interpreted as dominance but as no test for interaction can
be made, such a distinction can not be drawn.

(iii) The Partial Diallel Cross (Appendix C)

The analysis of these data is that suggested by Kempthorne and
Curnow (1961). The diallel consisted of 14. plants used as both male
and female parents with 7 crosses used in each array. The com-
ponents in the analysis of variance are the variances within and
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between families, the latter having 48 d.f. Of these, i d.f. contribute
to differences between arrays and measure general combining ability
(g.c.a.), the remaining 35 being concerned with estimating variation
within arrays or specific combining ability (s.c.a.).

Owing to the structure of this design the only way to calculate
the g.c.a. SS is to assume the absence of s.c.a. The s.c.a is then
obtained by subtraction.

TABLE 5

Components of variation and heritabilitiesfronz N.C.M.i

Sowing i Sowing 2

566

cv1 1039
34.71

131

7= 4.18
= r876

Vp = 5o76 = 24.25

=045 h'=O22

DR = 2264 \ —
IHR = 18gsJ
nE = 920

4156
4DR 524}cG 1672HR 1l48
yE2 753

Genetic component = 8188 per cent. Genetic component 68gb per cent.

In the absence of s.c.a., the expected value of observed Y0, the
flowering time of cross i <j, is

+g1 +g1

where j.e is the overall mean, and g1 +g1 are the g.c.a.s of the ith and
jth parent. To estimate the gs we minimise,

X 2' (Y1—/.L—g1—g)2.

If we write R1 for the ith array total, the normal equations take
the form A. G = Q
where A is the symmetric circulant matrix with elements a1 such that
a1 = s, the number of crosses per array (in this case 7) and a = i if
cross i xj is used and = o otherwise

G is the column vector with elements g

Q is the column Vector with elements Q = R1—se.
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In the present case, A takes the form:—

7000 I I I I I I I 000
07000 I I I I I I 1 00
007000 I I I I I I I 0

0007000 I I I I I I I

I 0007000 I I I I I I

etc.000 1 I I I I I I 0007
which on inversion by the method given by Kempthorne and Curnow
yields,

A—1 = a0 a1 a2 a3 a4 a5 a6 a7 a6 a5 a4 a3 a2 a1
a1 a0 a1 a2 a3 a4 a5 a6 a7 a6 a5 a4 a3 a2
a2 a1 a0 a1 a2 a3 a4 a5 a5 a7 a6 a5 a4 a3

a1 a2 a3 a4 a5 a6 a7 a6 a5 a4 a3 a2 a1 a0
with values obtained for a of:—

I

0
I
2
3
4
5
6

7

0173118
0025902
0019012
0010154

—0020358
—o-o29216
—0036106
—0040465

The values for Q. calculated from the row totals are:—

now if is the element in the ith row andjth column of A-1, the g.c.a.
SS is!'ajjQQ.

etc.

Q

2
3
4
5
6
7
8
9

10
II
12
13
'4

Sowing I

65500001
—32599999

42900001
—44-499999
— 24499999

28,0000!
2670000!

— 12299999
—41 399999
—1299999
56900001
14-900001

— 18299999
— 60-099999

Sowing 2

46 185717
—441,4283

40985717
— 18-214283

3 7857 '7

—0-714283
13585717

—9014283
—9014283

— 14314283
59 -5857 17

—27514283
— 130,4283
—282 14283
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The analyses of variance obtained in this way for each sowing are
shown in table 6.

From these analyses it will be seen that at neither sowing is the
s.c.a. M.S. significant, and hence it is only necessary to fit a and cr

TABLE 6

Analysis of t'ariance of partial diallel data

Item d.f. M.S. v yR. Expectation of
mean squares

Sowing r
1. Between families (F) 48 16635 6 I57O3 <0001

2. gc.a . . . 13 5I528 6 '3r73 <15001 o,-+-54+1Oa
+7°o

3. s.c.a. . . . 35 3675 6 <35 N.S. +54+IOa
. Blocks (B) . I 25937 6 51 <005 O,+5a>+245o

5. FxB . . . 48 5230 6 4937 N.S.

6. Within families . 383 5o85

Sowing 2
i. Between families (F) 48 11543 5 236 <o•ooi

2. g.c.a. . . 13 307.37 5 63o <0001 a+5a1+1oa
+ 7Oa

3. sea. . 35 44.14 5 <i N.S. +54+I0o
. Blocks (B) I 8204 5 r68 N.S. u+54+245a

5.FXB . . . 48 4882 6 9656 <0001

6. \iVithin families 383 2427

from the expectation of mean squares. The genetical interpretation
of these variances are shown below, together with a.

= Coy (H.S.) =
= Coy (F.S.) —2 Coy (H.S.)
= Vp—Coy (F.S.) = DR + -jH +nE2.

The non-significance of the s.c.a. item suggests the absence of non-
additive variation in the population i.e. HR

Thus a
= +nE2.
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TABLE 7
Components of variation and heritabilities from partial diallel data

Sowing i Sowing 2

= 665
= 4994

= 372

2427

Vp=6324 Vp3171

042
DR a66o
nE5 3664

= 047
DR = 1488
ni2 1683

TABLE 8
Analysis of variance of X.C.M. data

Item d.f. M.S. v P V.R. P t=f
Sowing i
i. Males (M) . 6 4o4i3 3 276 0025 +I0a,f+70a,
2. Females (F) . . 6 3 282 0025 a+10a,j+7007
3. MxF . . . 36 14653 9 III31 <0001 a+10O. Blocks (B) . . I 1356 8 <i N.S.

. M<B . . 6 1P47 8 <6 N,S.

6. FxB . . . 6 5136 8 <7 N.S.

7. MxFxB . . 36 4224 8 <36 N.S.

8. Within families . 377 4847

g. Pooled within
families (4, , 6, 7. 8) 426 4738

Sowing2. Males (M) . . 6 23303 3 471 <001 a,+I0,j+700,
2. Females (F) . . 6 10353 3 209 <01 u,+ 10a,1+ 7Oay

. MxF . . . 36 4946 9 77.54 <0•00I a,+1Oa. Blocks (B) . . I 2492 8 1 o8 N.S.

. MxB . . . 6 244l 8 <7 N.S.

6.FxB . . . 6 1750 8 <6 N.S.

7.M/FXB . . 36 2174 8 <36 N.S.

8. Within families . 377 2313

g. Pooled within
families. . . 426 2296
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Estimates of these together with the heritabilities are shown in table 7.
There is evidence from this analysis of considerable additive

variation (h2 —045) in the population, but no evidence of non-additive
effects. The estimates of h2 are very consistent.

(iv) The North Carolina Model 2 (Appendix D)

In this method it is possible to distinguish both maternal and
paternal arrays, any excess in variance of the former compared to the
latter giving a measure of maternal effects. The analysis is partitioned
into items for males, females, males x females and within families, plus
the block interactions (table 8).

With the exception of the females (F) item in sowing 2, the items
M, F, and M >< F are significant at both sowings. This non-significant
females item is however bordering on significance (V.R. =
P = 0.10-0.05) and hence for the purposes of estimation it has been
treated as a real effect. The expectations of mean squares have the
genetical significance as shown below:—

= = Coy (H.S.) kDR
Coy (F.S.) —2 Coy (H.S.) = 11R

= V,—Cov (F.S.) = DR+HR+nE2.
Thus from the analysis of variance (table 8) there is evidence of
significant additive and non-additive genetic effects. Estimates of a2
and the components of variation are shown in table 9. Since the
females item is not significantly greater than the males item, maternal
effects are assumed to be absent.

The estimates of heritability are consistent (0.23) but the genetic
component drops from 8 per cent. in sowing i to 6o per cent. in
sowing 2, i.e. there is proportionally less non-additivity at the second
sowing. However, the non-additive portion of the genetic variance is
approximately twice as large as the additive portion, and thus in the
absence of evidence of interaction we must infer the existence of
considerable dominance in the population.

(v) The half Diallel Cross (Appendix E)
This design includes the parents selfed and thus enables non-

additivity to be measured as the deviation of the F1 from the mid parent.
The SS for non-additivity can be further sub-divided into b1

testing the overall deviation of the F1 from the mid parent (uni-
directional effects), b2 testing the interaction of non-additivity with
arrays (a test of gene assymetry), and b3 testing for non-additive
variation from other causes.

The analysis of variance used is that described by Hayman
modified for the half diallel. The three non-additive components
described above appear in this analysis as items " b1 ", " b2 " and

b3 " respectively, while " a " tests the additive variation. This
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TABLE 9

Components of variation and heritabilities from .N.C. M.2 data

Sowing i Sowing 2

a= 368 =
2.621

= 381 a1 = 0773
992 rJ;f= 265

4738 a = 22-96

Vp = 6479 Vp = 2900

023 12 O23
4DR= I498 DR= 678-.
HR = 681VG

= 54'66 = 1060J Vc 1738
nE2 = 1013 nE2 = 1162

Genetic component 84 per cent. Genetic component 6o per cent.

TABLE 20

Analysis of variance of half diallel data

Item d.f. MS. V.R. P

Sowingi
a . 8 95-71 11-59 <0-001
b . 36 2337 283 <O'0OI
b1 . 1 1525 i-8
b2 8 1758 213 <005
b3 . 27 2539 307 <0-001

Blocksxa . 8 197
B1ocksb 36 965
Blocksb1 . I 001
Blocksxb2 . 8 8i6
Blocksxb3 . 27 1038
Blocksxt . 44 8-6

Sowing 2
a 8 3114 743 <0001
b 36 568 135 N.S.
b1 1 8-o 200 N.S.
b2 8 162 — —
b3 27 649 154 N.S.

Blocksxa 8 319
Blocksxb 36 441
Blocksxb1 1 000
Blocksxb2 8 6-93
Blocksxb3 27 3-83
Blocksxt 44 4.J9
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analysis is presented in table io. Each item is tested against the total
block interaction (b,).

The analysis gives evidence of additive and non-additive variation,
the latter being almost exclusively b3, suggesting that only certain
crosses show a significant deviation from the mid parent. Examination
of the original data (Appendix E) points to crosses of parent 8, with
parents i and 5. There is then either dominance specific to certain
crosses, or, more likely, non-allelic interaction. The interaction of

TABLE is

Analysis of variance of half diallel data omitting array 8

Item d.f. MS. V.R. P

Sowing i
a
b

.

.
78 6389

1033
720
116

<000l
N.S.

b1 i oz8 —
b2 . 7 6s —
b3 . 20 5221 137 N.S.

Blocksxa . 7 348
Blocksxb 28 1022
Blocks x b . 1 000
Blocksxb2 . 7 88j
Blocksxb3 . 20 1123
Blocksxt . 35 887

Sowing 2
a
b

.

.
7

28
2154
262

467 <0005

b1 . 1 400
b2 . 7 258
b5 . 20 256

Blocksxa
Blocks<b

.

.
7

28
254
513

Blocks x b . 1 o46
Blocks><b, . 7 891
Blocks x b3 . 20 403
Blocks><t . 35 461

array 8 with arrays i and 5 is more pronounced in the first sowing and
is probably the cause of the significant b2 item in this sowing.

On the assumption that there is interaction present, the analysis
was repeated omitting the interacting parent 8. The results are
presented in table ii, each item, as before, being tested against the
total block interaction.

After removing the presumed interacting array we are now left
with only additive variation. Thus it is suggested that the significant
non-additive item in the previous analysis was caused by non-allelic
interaction.

A separate test of dominance can be carried out on these data,
namely the Wr/Vr analysis of Jinks (i). This depends on cal-
culating the variance of each array (Vr) and the covariance of the array
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on the non recurrent parent (Wr) and plotting the regression of Wr
on Vr so that each parent is represented by one point on the graph.
In the presence of dominance and additivity only, the points should
be dispersed along a line of slope one, with the dominant parents
towards the origin and the recessive parents towards a limiting parabola
described by W,. i./VP2Vr. In the absence of dominance the arrays
would be clustered at random around the mid point of the line. Thus
a test for dominance is the consistency of the arrangements of arrays
over blocks and for this purpose an analysis of variance on W,. +Vr
was carried out, as suggested by Allard (1956). This analysis was
made before omitting array 8 (table 12).

TABLE 12

Analysis of variance of W + V,. data from complete half diallel

Item d.f.

Sowing i Sowing 2
——-—-—

M.S. V.R.MS. yR.

Arrays (r).
Blocks (B).
Bxr .

.

.

.

8
i
8

1164.36
I6o28

222
7.26*—

2732
IO76
I847

1.5—

* P<oo.

The non-significance of the array items shows that there is no
consistent arrangement of points on the Wr/Vr graph and hence no
significant dominance. The same is true on omitting array 8. How-
ever, it is worth noting here the danger of plotting Wi/V,. graphs
without testing for consistency of the array pt sitions over blocks.
Testing for the significance of the regression lint .ilte :ould not
detect the presence of different dominance relations in each block.
Thus we can conclude from this design that there is significant additive
and non-additive variation in the population, the latter very probably
being non-allelic interaction.

The diallel provides us with six statistics from which to estimate
the components of variation. With random mating and unequal
gene frequencies there are five such components D1, H1, H11, F1, E2
as defined by Dickinson and Jinks (1956) i.e.

D1 = E4uvd2

H1 = L'(8uv—i6u2v2)h2

H11 = .i6u2v2h2

F1 = .L'i6uv(u—v)d/z
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and occur in the statistics with the following coefficients.

VBIP = -D1+H1+H11—F1+nE2
V 1Dj--'-H -k-Fr — 8 I I 16 116 1

— j_ 1 T4 1 H
F 8 I16 116 11 16 1W —1D-H 1H 3Fp2/r — 4 1 I 16 1 16 II 32 1

V,2 =
Vp2 = D1 +irHi +H11 +nE2.

These components assume an infinite population. For a finite popula-
tion such as the present, all statistics except those within families,

TABLE 13

Statistics obtained from half diallel omitting array 8

Statistic

Sowing i Sowing 2

Block i Block , Block I Block 2

VBIP =
'9V =
Wpir =

Vft2
Vp =

418540
18-9464
43678
52173
91955

301145

38.4784
7'7275
3.1661
5.1557

164229
375250

207634
4-7346
15737
34625

104114
88125

269301
4-660k;
0-7557
12769
90641

28-9226

contain a sampling component equivalent to i /nth of the appropriate
"within family" variance, where n is the number of individuals
summed over to calculate that statistic.

In the present analysis, as there was no reason to assume the
existence of dominance, only the components D1 and 112 were fitted,
and then only after omitting array 8, as interaction invalidates the
operation. The values for the 6 statistics are shown in table i for
each block separately.

Least squares estimates of D1 and E2 were obtained from the statistics
averaged over two blocks for each sowing. The relevant C matrix
obtained for solving D1 and E2 and the estimates of these components
are shown in table 14.

An approximate test of goodness of fit of the model fitting only the
estimates of D1 and 112 shown above, can be obtained in a manner
similar to that described by Mather and Vines (1952). The process
involves carrying out an analysis of variance on the statistics at each
sowing. There is no expected mean for the statistics as each is com-
posed of six parameters, none having the same coefficient in all
statistics. Thus the SS for sitting six statistics has 6 d.f. The other
components are blocks—r d;f., blocks xstatistics—5 d.f. Of the 6
d.f. concerned with statistics, 2 d.f. are taken up by fitting D1 and E2.
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This SS is calculated as the SS for observed minus expected statistics
and subtracting this from the SS for fitting statistics. These variances
are shown in table 15.

TABLE 14

Cmatrix and variance components for half diallel

Analysis of variance for fitting D1 and E2 only to statistics

Item

Fitting fi statistics (S)
Fitting D1 and E2
Remainder after fitting D1

andE5
Blocks (B)
BxS .

The residual SS after fitting D1 and E2 is insignificant and hence
the variation in the population, after omitting array 8, can be explained
assuming only that D1 and E2 are present with the values shown in
table 14.

5. DISCUSSION AND CONCLUSIONS

The experimental techniques investigated can be compared using
various criteria. It is proposed first to discuss their relative merits
under each criterion separately—specific evaluation, and then to
attempt to draw overall conclusions—general evaluation.

D1 E2 Sowing I Sowing 2

2983223

—0187390 0030993

/ 29692750\
I\397070917)

/ 17614120

228400110

Sowing i = 141730 —— Dj+5E2
E2 = 67423

Sowing 2 D1 = 9.7470 h' = 021
E2 = 37781

TABLE 15

* P = 005-00!. P<oooi.
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I. SPECIFIC EVALUATION

(1) Size of population sampled

It is obvious that the larger the sample of parents used in any
technique, the closer any estimate of a parameter will become to the
population value, other factors being equal. The actual number of
plants used as parents in any design are shown in table i 6.

It can be seen that B.I.P.s use the most parents, in fact ten times
as many as does the diallel.

TABLE i6

Number of parents used and number offamilies raised in each design

B.I.P.s N.C.M.i Partial
diallel

i
N.C.M.2

14

Half
diallel

9Sample size . . 86* 48

Families raised . . 43** 44 49 49 45

* Originally go 1** but 2 crosses failed.
Originally 45 J

For many studies, however, the relevance of this criterion may
be doubtful. For instance a breeder may only be interested in the
genetic properties of a small selected sample of lines and not with a
whole population of possible lines. In such cases the small sample
techniques may be able to include most, if not all, the material under
investigation.

However, as the populations become larger and more variable,
either large samples or repeated samples are necessary.

(ii) Suitability for different breeding material

Owing to the breeding behaviour some experimental material
permits only a limited number of families to be raised from each
female. Most animals fall into this category and many plants do not
produce sufficient flowers, for a single plant to be used as a recurrent
female parent. In such situations the B.I.P. and N.C.M.i. techniques
are eminently suitable in that only one family per female is required.

In many domesticated animals the sex ratio is kept extremely
unequal for economic reasons and hence raising B.I.P.s is not practical
and the N.C.M.i. is superior having indeed been designed for just
such situations.

If it is possible to raise more than one family per female and the
necessary corrections for parity are made, then the other three tech-
niques may also be used. If the experimental population consists of
inbred lines, strains, or distinct sub-populations the partial diallel,
N.C.M.2 and the half diallel are all possible. When the material is a
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random mating population the half diallel cannot be used unless the
population consists of monoecious plants, because of the problem of
selfing. Using Papaver dubiurn all programmes were equally easy to
carry out.

(iii) Labour of computation

The amount of computation involved in estimating the components
of variation increases with the restraint the programme imposes on
the arrangement of matings, but all are basically simple analyses of
variance. However, in the partial diallel there is a complex 14 x14
matrix inversion followed by the calculation of a series of sums of
products which on a desk calculator at least amounts to a computa-
tionally arduous procedure.

(iv) Number of statistics obtained and possible
number of components estimated

Of the five designs used B.I.P.s yield the fewest statistics—two-----
and hence allow only two parameters to be estimated. This only
permits an approximate breakdown of the phenotypic variance into a
genetic and environmental component. However, one can partition
the genetic variance by using the covariance of B.I.P. family means on
the parental values. Very often, however, it is impossible to grow
parents and offspring at the same time, as in this experiment, and
hence the covariance may be upset by the effects of different seasons.
Also if the parents or the parents selfed are grown at the same time
as the progeny it means that the size of the experiment is also increased,
or alternatively the number of parents used must be decreased to
maintain equality with other programmes. For example, in this
investigation the number of families was arbitrarily fixed at 45, and
if the parents selfed and B.I.P. families are to be included, then only
o parent plants could be used, and the advantage of a large parental
sample would be reduced.

The North Carolina models i and 2 and the partial diallel all
yield 3 statistics by allowing the between families statistics to be
subdivided. This allows the genetic and environmental components
to be separated and the genetic component to be broken down into
additive and non-additive components. Furthermore, the N.C.M.2
allows one to discriminate between maternal and paternal arrays and
so obtain a measure of maternal effect.

The half diallel, however, also allows the detection of the direction
of dominance, the estimation of the relative frequency of dominant
increasing and decreasing genes, the grouping of parents in terms of
the number of dominant genes they carry by means of the Wr/Vr
graph and a test of the adequacy of an additive dominance model.
Altogether six statistics can be obtained from this design to give least
squares estimates of the five components D1, H1, H11, F1 and E2 as
defined earlier. Also it is the only design to give Ed2 for VA and hence
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a dominance ratio that is not biased by unequal gene frequencies.
Thus the diallel is superior on the grounds of absolute amount of
information provided.

(v) Tests of assumptions

The basic assumptions inherent in the interpretations of the data
from these designs are listed in section 3.

Of the designs used in this experiment only N.C.M.2 provides a
test for maternal effects: it suggests they are absent. However, in the
diallel this test was deliberately excluded as a full diallel with reciprocals
would have halved the number of independent F1 families that could
be raised. Similarly in the B.J.P.s and N.C.M.i, the use of the co-
variance of B.I.P. families on to male and female parents would
necessitate a much larger experiment. In the partial diallel the
authors have not suggested a sampling procedure to take in reciprocals,
nor have they produced an analysis which could measure maternal
effects in the design as it exists at present.

Dickinson and Jinks (i) have discussed tests for linkage, cor-
related gene distributions, and non-allelic interaction for the hetero-
zygous diallel. No other design includes a test of the present of these
effects nor do they detect the presence of multiple alleles. In the
present case the diallel is also unable to detect disturbances due to
multiple alleles.

(vi) Observed results

The estimates of the components of variation from all the designs
are presented in table i 7 together with the means and variances of the
flowering times of the parents used. In this table DR, HR and E,
have been converted to VA, V0 and VE using the relationships set out
in table '.

The total phenotypic variance (Vp) is consistent over designs at
each sowing with the exception of that from the half diallel, which is
lower than the rest. This lower phenotypic variance in the half
diallel is also shown by the sample of plants from which it was derived
(bottom line of table 17). Furthermore, inspection of the mean flower-
ing times of these parents shows them to consist of later flowering plants,
the effect of which will be discussed later. It would appear, therefore,
that the small sample of 9 plants chosen for the half diallel is un-
representative of the population as a whole.

In every design the total phenotypic variance can be partitioned
into genetic (VG) and environmental (VE) components. It can be
seen that the VE items fall into two groups on the basis of their magni-
tudes. In the B.I.P.s, the partial diallel and half diallel they are large,
and in the two North Carolina designs they are small, at both sowings.
Since, however, all the designs consisted of approximately the same
number of plants individually randomised over the same range of
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environments, the VE items should be the same within the limits of
sampling error. How then could these differences come about?

The partitioning of VG into additive (VA) and non-additive
components (VD) throws light on the source of this discrepancy. In
all the cases in which the VE item is high, there is no evidence of VD,

TABLE '7

Summary of individual component analyses of the various designs together with the means and
variances of the parents. (Sowing i upper line, Sowing 2 lower line)

B.I,P.s N.CM.i N.C.M. diallel

Vp . . . . 6o38 5076 6324 6479 4080
27I1 2425 3171 2900 2376

VG . 2150 4156 2660 5466 709
884 5672 1488 1738 487

VA . . . . 2150 2264 2660 1498 709
8•84 524 1488 678 487

\'D . . 1892 0 3968 o
11'48 0 io6o 0

VE . . . . 3888 920 3664 1013 3371
1827 753 i68 1162 1889

VG as percentage of Vp 36 82 42 84 I 7
33 69 47 6o 21

036 045 042 023 017
033 022 047 023 021

Within family variance 4963 3471 4994 4738 40.07
22'69 5876 2427 2296 2309

Number of parents
used . . . 86 48 14 14 9

Mean flowering time 4286 4360 4279 4029 4567

LVariance . . 2946 3314 3418 2345 5450

while VD is present in the cases of low VE. This suggests either that
the designs with high VE items have not extracted all the genetic
variance from Vi,, so leaving some confounded with VE, or that the
other designs have ascribed to the non-additive components, variation
which is not in fact due to dominance. It is also possible that both
factors are acting together.

Let us now consider each design, with these possible sources of
error in mind. It will be remembered that the B.I.P.s yielded only two
statistics, VBIP and V, from which to estimate th components of
variation, and hence we could only estimate two parameters, VG and

P
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VE. To do this, however, we had to assume the absence of non-
additive effects. In the presence of non-additivity, then, our estimate
of DR would contain 1HR, and nE2 would contain HR, i.e. both
,D and nE2(VA and VE) would be overestimated by the same amount,
thus:—

VA = DR+HR
YE = nE2 +*HR.

However, if we neglect the VA from the diallel there is no suggestion
from the other designs that VA from B.I.P.s is too high. Further
evidence on this point can be obtained by using the supplementary
information yielded by the data from the parents selfed which, though
not part of the present trial, were grown for a selection experiment.
The covariance of B.I.P. means on the mid-parental (selfed) value

TABLE z8

Revised components of variation from B.I.P.s

Sowing i Sowing 2

Vp = 1075 kDR+'eHR
874 = DR

VBIP = 4961 éDR+HR+nE2

VA J748 — DR
VD 804 = HR
VE 3484 = nE2

= 440= 333
= 2291

= 666= 428= 1637

provides a direct estimate of DR. This together with the other two
statistics obtained from the B.I.P.s is shown in table i8.

As the VD item is low and the VE item still high when compared
with these components estimated in the two North Carolina designs,
we must assume that our second hypothesis is causing the discrepancy,
i.e. the presence of variation other than dominance inflating VD in
these latter designs.

From the half diallel statistics it was possible to carry out a least
squares estimation of the components of variation. This design, as
mentioned before, has the added advantage of estimating VA as 2'd2.
The Hayman analysis of variance on the complete data from the
half diallel showed the presence of both additive and non-additive
variation, but it was shown that this non-additivity was probably due
to complementary gene interaction. Also after removing the inter-
acting arrays a good fit could be obtained with the data using only
D1 and E2, thus any non-additivity in the phenotypic variance was
not of a type to be ascribed to dominance, and hence was forced into
E2. It is suggested then that much of the non-additive variation of the
other designs, is also likely to be of an epistatic nature. It must be



EXPERIMENTAL DESIGN IN BIOMETRICAL GENETICS 227

borne in mind, however, that as was pointed out earlier, the parents
used in the half diallel were a late flowering sample and showed less
phenotypic variance than those in other designs. Since the genuine
environmental variation is probably constant over all designs this will
have the effect of reducing the proportion of the variation ascribable
to the genetic components.

Further evidence that the North Carolina designs are ascribing
variation other than dominance to VD can be obtained by comparing

TABLE ig

The expected mean squares from the half' diallel and their genetic interpretation

a =
b = o+ioa

VBIp

where p = fl+2*
and n the number of parents

=
= IVD
= lV+1Vn+V

* \Vearden—personal communication.

the estimates of the components of variation yielded by the half diallel
data using both the least squares method described previously and the
North Carolina approach. The latter method depends on estimating
the components from the Hayman analysis of variance, the expectations
of the a and b items being as shown in table 19.

As the a and b mean squares were originally calculated from the
means of sets of five measurements, it is necessary to multiply them
by five before solving. This was done with both the complete data,
and the data after removing parent 8. The components of variation
obtained from both sets of data are shown in table 20 together with
values obtained by least squares estimation. For comparison the
components obtained from the N.C.M.2 are also shown.

The VA item is of approximately the same order of magnitude in
all the analyses shown in table 20. However, the VD and VE items
show marked differences. The North Carolina approach to the com-
plete data from the diallel yields values of VD and VE of magnitudes
similar to N.C.M.2 while after omitting the interacting parent, the
same approach yields values of V and VE similar to those from the
conventional analysis. As the earlier diallel analysis had suggested
the presence of non-allelic interaction in the complete data, it must
surely be this interaction which is inflating VD relative to VE. If this
is true of the diallel data, then it is likely to be true of the data from
the North Carolina designs also.
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Any failure of the assumptions on which the genetic model is based
will upset the estimation of components. It is not easy to visualise how
the VE item could be underestimated, and thus it must be assumed that
the estimates of VE yielded by the two North Carolina designs give a
closer approximation to the true value.

TABLE 20

The components of variation obtained from the Hayman analysis of variance of the half diallel
data, before and after removing array 8, using expectations of mean squares. The values
of the components from the .t/.C.M.a, and, by least squares, from the half diallel are
shown for comparison. (Sowing i upper line, Sowing 2 lower line)

Half diallel

North Carolina
model.

Conventional
analysis

N.C. approach
(omitting parent 8)

N.C. approach
(complete data)

VA

VIA

VE

709
487

0
0

337l
i88g

487
154

473
0

3173
2232

658
231

3072
212

1374
2034

1498
678

3968
io6o

1013
1162

II. GENERAL EVALUATION

The raising of B.I.P.s would appear to be a technique of wide
application under most breeding systems and permits the testing of a
large part of the population. However, it provides little information
about the variance components of the population beyond allowing an
approximate partition of the total variance into genetic and environ-
mental components.

The N.C.M.i allows one to test a large number of plants from the
population, and is especially useful when the sex ratio is unequal.
Both this and the N.C.M.2 appear to extract the additive variation
adequately, but the non-additive component appears to be greatly
affected by epistasis, so giving an inflated estimate of dominance and
a correspondingly lower estimate of VE. No unambiguous tests of
additivity or dominance are suggested by the authors of these designs.
The design has been subsequently modified to estimate additive-
additive interaction (Matzinger and Cockerham, 1963) but only in
restricted circumstances not applicable here. However, both designs
provide simple methods of estimating VA and VD and allow tests of
significance to be applied to them.

The partial diallel appears to yield no more information than the
two North Carolina designs, while enforcing a crossing programme
that is complicated to devise, and lengthy and awkward to analyse.
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These disadvantages appear to outweigh its sole advantage namely the
larger sample of parents it employs compared with a complete diallel.

The half diallel has the advantage of using only a small number of
parents resulting in the possibility that, as in the present case, an
unrepresentative sample is taken. However, it can be applied to a
wide range of breeding systems and within the restriction of its small
sampling power, provides a great deal of information about the
components of variation of those individuals selected. It allows one
to test for the presence of non-allelic interaction, and estimates
additivity and dominance unambiguously.

Thus where it is practical to carry out the half diallel cross it is to
be preferred because of the large amount of precise information it
provides about the components of variation. If this is not practical
then the two North Carolina techniques are most useful.

6. SUMMARY

Estimates of the components of variation in flowering time in a
population of Papaver dubium have been obtained from five breeding
programmes, with approximately the same number of families ()
raised in every design to facilitate comparisons between them. The
designs used were B.I.P.s, the North Carolina models x and 2, the
partial dialici and the half diallel.

Several criteria were used to compare the methods the most
important being the estimates they yielded of the components of
variation. The B.I.P.s had the advantage of using the largest sample
of parents from the population but had the disadvantage of only
yielding two statistics from which to estimate the components. This
drawback could be overcome either by using the covariance on the
parental means in the previous year, which would result in complica-
tions due to different seasons, or by using the covariance on the parents
or parents selfed in the same season. This latter modification of the
design would result in using only a third of the number of parents.

The two North Carolina designs were well suited to certain breeding
systems, but had the disadvantage of providing no test of non-allelic
interaction. There was evidence that this type of interaction was
present and had upset the estimates of the components from these
designs.

The partial diallel appears to have no advantage over the other
designs, and the analysis associated with it was computationallv
arduous.

The half diallel gave the most information about the small number
of plants used in it. It demonstrated additive and non-additive
variation, but showed the non-additive variation to be mainly due to
non-allelic interaction. After removing this interaction, good agree-
ment with the observed statistics was obtained by fitting D1 and E
only. The estimates of these components were obtained by least
squares, and hence are likely to be the most reliable estimates of all

P2
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the designs. The small sample of parents used, however, appeared to
be unrepresentative of the population as a whole.
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8. APPENDICES

APPENDIX A

Mean flowering times of B.JP. families. (Block i upper line, Block 2 lower line)

Sowing Sowing Sowing

I 2 I 2 1 2

286 30.4 i6 268 348 31 35,4 278
278 302 174 370 246 310

2 323 330 17 296 410 32 35.5 336
298 302 270 350 326 316

3 318 332 i8 298 270 33 i6•8 280
316 292 33'4 33.0 238 280

4 28'4 310 19 340 290 34 236 350
300 325 278 262 252 336

5 31'2 33'5 20 24'S 29'2 35 31'8 33'2
272 300 276 286 343 356

6 226 314 21 30.4 362 36 102 258
280 278 260 338 ,6'6 230

7 296 , '8 22 276 348 37 286 300
250 31.4 360 3 6 286 352

8 262 282 23 322 298 38 230 280
184 308 270 304 276 282

9 280 28'4 24 274 308 39 298 35,0
304 320 230 300 30'4 3 .o

10 304 o'6 25 286 324 40 295 335
272 304 285 362 296 358

11 34'6 346 26 28'O 268 41 270 3l'2
30'4 31,5 34'O 29'8 28'4 31'6

12 244 312 27 310 304 42 342 327
244 31'6 280 280 338 33'6

13 308 350 28 224 274 43 316 308
312 322 200 28'4 264 278

14 284 324 29 260 324
280 315 32'6 318

15 278 346 30 256 320
31.4 324 292 326
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APPENDIX B

iicans flowering times of .Atorth Carolina model z families. (Block i uppsr line, Block 2
lower line)

1 2 3 4

Sowing Sowing Sowing Sowing

1 2 1 2 I 2 1 2

21'6 312 12 330 356 23 184 214 34 336 324
232 28'6 35'6 350 264 242 338 335

2 308 344 13 298 320 24 ig8 254 35 360 296
190 308 280 330 238 300 310 32'2

3 278 296 14 248 302 25 290 297 36 320 393
310 346 270 302 327 344 3tO 390

4 288 286 15 334 320 26 268 324 37 310 362
244 342 314 318 284 288 314 348

5 278 360 298 340 27 248 31.4 38 284 334
304 323 304 308 268 316 292 358

6 236 306 i 26'4 320 28 288 298 39 337 330
254 254 296 322 296 322 286 252

7 302 332 i8 310 320 29 152 282 40 232 284
318 332 3I0 3o•8 i86 240 252 334

8 288 30'O 19 330 322 30 290 33'O 41 29'6 3I4
212 308 296 322 326 352 340 3.3

9 327 328 20 33.5 304 31 334 338 42 270 3P8
318 256 334 296 312 324 3.I: 276

10 176 310 21 33.4 330 32 283 276 43 346 352
210 254 300 320 254 30'6 276 320

II 190 258 22 292 290 33 232 298 44 325 35.0
202 254 260 336 210 274 316 308
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APPENDIX D

Mean flowering limes of Xorth Carolina model 2families. (Block i upper line, Block 2
lower line)

Sowing Sowing Sowing Sowing Sowing Sowing

\\
2 2 I 1 2

6

2 I

8 256 316 294 30.4 298 272 21'O 31'2 274 266 330 31'8 256 284
296 334 270 3I2 256 302 30-2 230 290 330 348 31.6 248 280

9 256 343 286 284 23.8 316 23'O 318 3I0 320 303 320 210 26'O
230 318 290 296 330 356 226 270 308 31 2 310 324 228 252

10 34'2 316 31'6 304 226 308 29'8 292 254 32'2 218 268 12•0 242
264 332 260 340 262 310 252 290 282 34.0 170 258 io8 196

11 296 342 272 3P2 196 294 29'O 290 27'O 316 254 270 230 270
268 318 282 320 222 326 280 33'2 268 344 300 280 i6'o 238

12 278 306 272 292 306 348 178 310 310 320 286 328 270 296
320 33.0 244 282 294 332 19.5 260 308 3o'6 29'2 288 313 34

13 260 368 286 272 262 30.4 19'6 290 272 328 268 350 258 268
318 326 288 312 220 270 184 294 300 302 254 316 22'6 29'2

14 232 316 172 238 238 304 27'2 278 i88 252 320 302 142 290
208 296 i'6 234 214 256 196 274 176 234 232 286 i8•8 26'8
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