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THIS paper applies the method of Gilbert (1963) to Xicotiana rustica
data previously reported by Jinks 1956) and Jinks and Jones
(1958). The data consist of flowering dates (in days) and plant
heights (ins.) of parents, F1, F2 and backcrosses in each of two years
in an 8 x 8 diallel cross (including reciprocals). For experimental
details, see Jinks (1954, 1956).

Can the concepts of Mendelian genetics be reliably injected into
practical analyses of polygenic variation ?—the authors cannot agree.
Here we attempt a purely statistical description of the data: so the
Wolf shall abide with the Lamb. Unhappily we cannot agree about
which of us is the Lamb.

1. ALGEBRA
This section extends the previous analysis (Gilbert, 1963) to cover

reciprocal differences. The analysis is now applied to Ic (Ic —i) observa-
tions y,,. Here might come from the cross between the ith parent
(as male) and the jth parent (as female); or it might come from the
backcross of (i xj) to (i). The method is the same in either case.
The model is

= m+a2+b+cd3+remainder (i)

where Ea = Eb = Ec = Ed = o and one arbitrary restriction must
be placed on L'c2 or Ed2. If we include selfs y, the analysis becomes
that of a complete Ic xl table (here 1 = Ic) discussed in the previous
paper. However, we shall omit selfs, partly because the genetic model
of the previous paper suggested that model (i) should not be applied
to selfs and crosses simultaneously, and partly because we wish to
keep parents (selfs) and crosses statistically independent. The
least squares equations are

dEed(Ic—2) E = (lc—2)cEd2—kCd2+Ecd2+f (za)

c.!'cd
(k—2) E = (k—2)dEc2—kc12d1+L'c2d+ (gb)
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where is the " special combining ability" remaining after fitting
additive male and female parental constants according to Yates
(1947). These equations reduce to the corresponding equation on
p. 67 of Gilbert (1963) when = and c =d (or c = —d with
the sign of z reversed). Here we no longer need to distinguish
between the " positive

" and "
negative

" models (i) and (2) of the
previous paper. This fact, coupled with the small differences actually
observed between c and d, removes one possible objection; namely
that one diallel cross might contain a section best analysed by the
"positive "model, and another section which requires the" negative ".
All the plant height data opted for the" negative "model for reciprocal
sums (and so c. —d1), whereas flowering dates all chose the" positive "
(i.e. cd1). Since the convergence of the iterative solution of equations
(2) i5 even slower than before, it proved convenient to apply the
previous analysis to reciprocal sums and then proceed to a new com-
puter programme for solving equations (2). The sum of squares for
multiplicative constants is

r (2'cd)2= I (k—2)L'c2Ed2—kL'c2d2+k—
with 2k —3 d.f. (Our model places 3 constraints on the values of c
and d: or alternatively, the sums of equations (2a), of equations (2b),
and of [c1(2a) —d(2b)J are all identically zero.) As pointed out before,
the analysis is really concerned with the simultaneous fitting of additive
and multiplicative constants toy3. In the analyses presented here, the
m.s. for additive combining abilities exceed the m.s. for multiplicative
c.a. That is merely a consequence of extracting the additive para-
meters first, and would be reversed if we fitted multiplicative para-
meters first.

2. 1953 F1 PLANT HEIGHT
As an example we analyse completely one set of data. There is

no reason to suppose that the other sets of data, if analysed in similar
detail, would behave differently. For each block and for the sum of the
two blocks, the additive-multiplicative model has been fitted first to
reciprocal sums, and then distinguishing between reciprocals. All
figures in this paper are quoted on a per-plant basis.

As Gilbert (1963) pointed out, m.s. for "multiplicative c.a."
cannot validly be tested against error: but here they can be tested
against each other. Since the model is not additive, s.s. for "block
differences" cannot be found directly from block differences, but must
be obtained by subtracting s.s. for "block sums" from s.s. for each
block separately. Similarly for " reciprocal differences ". Now, an
additive model applied to block sums must necessarily be exactly
equivalent to the same model applied to each block separately (and
then summed over blocks). Such equivalence is no longer automatic
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TABLE i

Analysis of variance of 1953 F1 plant heights

d.f. m.s.

BLOCK SUMS

Reciprocal sums
Additivec.a. . 7 11,516
Multiplicative c.a. 7 1461
Remainder . 13 20!

Reciprocal differences
Additive c.a. 7 22!
Multiplicative c.a. 6
Remainder . I5 96

BLOCK DIFFERENCES

Reciprocal sums
Mean . 1 2
Additivec.a. 7 4!
Multiplicative c.a. 7 59
Remainder . 13 33

Reciprocal djfferences
Additive c.a. . 7 27
Multiplicative c.a. 6 26
Remainder . I5 39

here, and so it is comforting to notice that the multiplicative c.a.
do not differ significantly between blocks. Neither do they show re-
ciprocal differences. In section 4, only the backcross generations are
analysed for reciprocal differences.

3. ANOMALOUS PARENTS
In two cases (1952 F2 plant height and 1952 backcross flowering

date) one very large, negative value of c is counterbalanced by a set
of positive values. We shall denote the outstanding value by c3. Such
cases arise when the interactions involving parentj are more important
than the remainder. In the extreme we have

c =c+/c (all i j)
c3 = —(k—i)c+8fc

where the 8s, which are small compared with c, sum to zero and are
chosen so as to predict exactly the observed interactions involving
parent j, while a purely additive scheme is predicted for the remaining
crosses. In such circumstances, the value of c is arbitrary. The case
of 1952 F plant height is so close to this extreme that it proved impos-
sible to obtain convergence to a final set of cs, but easy enough to find
any number of sets of values, all of which give effectively the same
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predictions. One of these sets is quoted in table 5. Parents i, and 4
show, in general, the largest absolute values of c; and Jinks (1954,
1956) interprets the departures from additivity evinced by the crosses
involving those parents, as evidence for non-allelic interactions between
additive genes. The present analysis is rather different. It not only
draws attention to these same parents, but flatly asserts that in 1952 F2
the departures from additivity of parent 4 far outweigh those of any
other parent, when examined by this additive-multiplicative model.
It is clearly advantageous that the analysis can draw attention to such
"anomalous" parents: the technical difficulty over convergence is a
consequence of using diallel cross data.

4. NUMERICAL RESULTS
"Error" is derived from comparisons between replicates. The

remainder m.s. usually exceeds " error ", but only by a factor of about

TABLE 2

Analyses of variance of Fjs

d.f.

m.s. for

plant height flowering date

1952 1953 1952 1953

Additivec.a. . .
Multiplicative ca. .
Remainder . .
Reciprocal differences
Error . . .

.

.
.
.

.

7
7

13
28
56

4510
581
144
23
26

11,516
1461
201
117
37

897
222
41

io6
21

3408
922
135
217
22

TABLE 3

Analyses of variance of F,s

d.f.

m.s. for

plant height flowering date

1952 1953 1952 1953

Additive c.a. . .
Multiplicative c.a. .

Remainder . .
Reciprocal differences
Error . .

.

.

.

.

.

.

.

.
.

7
7

13
28

167

5685
771
141
104
35

10,949
1213
176
203
77

1528
232
47

126
32

4504
839
77

213
72

four, so that the additive-multiplicative model describes the data not
perfectly, but well enough for any practical purpose. The genetic
model discussed by Gilbert (1963) predicts no reciprocal differences
in the backcross multiplicative c.a.; this prediction is not fulfilled.
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TABLE 4

Analyses of variance of backcrosses

d.f.

m.s. for

plant height flowering date

1952 1953 1952 1953

Additive c.a. . .
Additive c.a.x reciprocals .
Multiplicative c.a. . .
Multiplicativec.a.x reciprocals
Remainder . . .
Remainderxreciprocals .
Error . .

.

.

.

.
.
.
.

7
7
7
6

13
15

109

4955
26o
494
152
97
34
55

9879
745

1154
249
192
64
66

1298
979
211
1374
12!
40

5930
1924
759
305
56
91
52

Values of cfor plan

TABLE 5

t height (from ye., = m+b+b—cc)

Va

TABLE 6

lues of cfor flowering date (from y, = m+ b. +b3 +cc,)

Parent I 2 3 4 5 6 7 8

1952 F1 .
'953 F1 .
1952 F2 .
1953 F1 .
1952 Backcross
1953 Backcross

.

.

.

.

.

.

—o'g6
—,66
—027
—234
—312
—232

063
P55
o'86
O28
027
o47

—391
—274
—3'24

077
—004
—P98

035
I62

—046
—069

0I5
—0.97

P33
P64I2I
303
P33
201

oo6
—277
—o,6
—P52
—oo6
—0I2

P12
P52
095
020
o6o
P36

P38
o•83
111
i13o
1.46
P55

The case of 1952 F2 is discussed in section 3. Otherwise the values
of c are very similar, indeed much more so than the values of ,t from
which they are estimated.

5. RELATION BETWEEN GENERATIONS
Since the values of b and c describe the various crosses sufficiently

well, we enquire how to predict them from earlier generations. Here
the data are unsatisfactory for several reasons. The number of parents
is small: regression co-efficients estimated from only eight points must

G2
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be treated with some reserve, however small their estimated statistical
errors may be. The values of c for the cases discussed in section 3
are anomalous. The values of b and c are themselves highly correlated,
and since this is certainly not always the case, any observed relation
between generations may be peculiar to the present data. But, unlike
other published cases, the experiments reported here include back-
crosses; we shall concentrate on this aspect.

The genetic model mentioned in section 4 (and indeed any genetic
model which postulates additive gene effects, and excludes non-allelic
interactions) predicts:—

(i) Equal multiplicative c.a. for F2 and backcross reciprocal sums.
(2) Equal additive c.a. for F2 and backcross reciprocal sums.
() No reciprocal differences for backcross multiplicative c.a.
(4) Reciprocal difference for backcross additive c.a.

= a—b1 in Model (i), =p1+constant.

For (i) and () see section 4. The observed values of (a —b2)----
which, incidentally, are identically equal to the reciprocal differences
between the combining abilities of the purely additive model—do
not fulfil prediction (4). In fact, Jinks (1956) uses this criterion to
test for non-allelic interactions between additive genes.

TABLE 7

Regressions of (a—b1) on

1952 plant height . . o8 (±oios)
1953 plant height . . o'6o (±oo)
1952 flowering date . . 0773 (±0232)
2953 flowering date . . 0769 (±0.058)

But prediction (2) 5 much more accurate:

TABLE 8

Correlations (6 dj.) between additive c.a. for F, and backcross reciprocal sums

2952 plant height . . 0979
2953 plant height . . 0988
1952 flowering date . . 0'941
2953 flowering date . . o.8

The F2 and backcross additive c.a. are, in fact, equal within the limits
of error. The data suggest—but do not prove—that the relation
between combining abilities in the same generation (F2 and backcross)
is clearer than that between combining abilities in different generations.

6. DISCUSSION

What, then, has the analysis achieved? It has shown once again
that the additive-multiplicative model can describe rather accurately
the crosses in one generation in terms of two parameters per parent,
without postulating any particular genetic model. The statistical
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parameters nevertheless have some (unknown) genetical meaning,
since their values in successive generations are always more highly
correlated than are the observations from which they are estimated.
Since the model is purely statistical, prediction from generation to
generation can only be empirical; not enough sets of data have yet
been analysed for us to decide whether, and how, such prediction can
be usefully made. One criterion will evidently be, whether this
statistical prediction improves on the prediction obtainable by fitting
a genetic model to the data. Genetic models certainly try to probe
deeper into the situation, but they cannot help making numerous
simplifying assumptions, since the number of parameters must not
exceed the number of observations. The choice is between a statistical
model with no theoretical basis, and a genetic model with (possibly)
too much.

7. SUMMARY

An additive-multiplicative statistical model is extended to include
reciprocal differences. The model describes the crosses in any one
generation remarkably well; but prediction from one generation to the
next remains uncertain.

Acknowledgment.—We thank Dr F. Yates, r.a.s., for the use of the Rothamsted
computer.
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