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1. INTRODUCTION

A FULL diallel cross consists of the p2 possible matings among a set of
p parental lines including p(p— i) pairs of reciprocal crosses. The
purpose of making a diallel cross is to obtain knowledge of the kinds
and magnitudes of variability which contribute to differences among
the lines. When the geneticist approaches diallel analysis, however, he
is often overwhelmed by the many and seemingly different analyses
presented in the literature. Yates (r) has given an analysis; this
has been modified and stated in terms of biometrical genetic parameters
by Jinks and Hayman (x) and further by Hayman (1954a, b) and
Jinks (i4). Kempthorne (1956) has discussed these methods of
analysis in terms of variances of inbred parents, crossbred offspring
and the covariance between parents and offspring. Griffing (1958)
has classified the four different ways in which at least a p(p—I)/2 set
of crosses can be obtained, and has discussed the analysis of each in
terms of the variances of general and specific combining ability. In
order to estimate not only combining ability variances but that of
maternal effects as well, Henderson (1948 and 1952) has used a different
analysis. Also concerned with maternal effects, Jinks (1954) and
Jinks and Broadhurst (i963) have used still another analysis of a
diallel cross.

The purpose of this paper is to discuss a diallel cross replicated in a
randomised complete block design. Biology dictates that two different
models are possible, and statistics define two methods of sampling.
Three analyses will be considered under each model and method of
sampling, and indications given as to the appropriate analyses for
particular biological and statistical situations.

2. STATISTiCAL DESIGN AND LINEAR MODELS

(I) Design
As stated in the introduction, it has been assumed that the p2

possible matings are replicated in a randoinised complete block design.
This design is not essential for diallel analysis, but replication is
generally necessary in order to obtain an estimate of random variation.
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The sources of variation, degrees of freedom and expectations of
mean squares for the analysis of such a design are

Source d.f. E (M.S.)

Replicates. .

Matings . . .
Random variation .

b—i

p2 —

(b— i) (p' — i)

2+p2a2
.2 +bo
u2

The objective in analysing a diallel cross is the partitioning into
meaningful components of the p2 —i degrees of freedom for matings,
the corresponding sums of squares, and the variance among matings
(at). In order to do this, a linear model based on the biology of the
species is required. The model states the nature of the effects producing
variability, and the appropriate analysis allows for the estimation of
the magnitudes of these different kinds of variability.

(ii) Model for maternal effects (m.m.e.)
In diploid species, the male and female contribute equally to the

nuclear genetic composition of the zygote, but their biological contribu-
tions are not always equal. Even if cytoplasmic inheritance is ruled
out, other maternal effects are possible. The female gamete is often
larger than the male; the fruit of plants may contain maternal tissue
or endosperm with a greater maternal contribution; many species of
animals are viviparous, and others retain or incubate the zygote during
a part of its development. Finally, many of the vertebrates supply
food to their young after they are born or hatched. Thus a model
which allows for differences among maternal effects reflects a common
biological situation. The model for maternal effects is

ijk = t +g1 +g +m +s +bk +€jjk
where

= a mean common to all matings to which inference can be
made from this p2 set.

g. = the common genic contributions of the ith paternal line.
g3 — the common genic contribution of the jth maternal line.
m, = the maternal contribution of the jth line.

= the interaction between the genetic contribution of the ith
line and that of the jth line.

bk = the effect of the kth replicate; it is commonly assumed that
the bk are normally, independently distributed with mean
zero and variance a.

ijk = the random effect peculiar to the jth cross in replicate k;
the Ejik are assumed n.i.d. (o, a2).

The nature and distributions of g1, g, m1 and s,3 depend on the
sampling method and will be discussed in these sections.
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(iii) Model for reciprocal effects (m.r.e.)

Many examples can be cited where the progeny of the j cross
differ significantly from those of the ji cross, and these differences can
not always be assigned to maternal effects. Sex linkage is probably
the most simple explanation of such reciprocal effects, but no matter
what the cause, it is not an unusual occurrence. A diallel model which
includes reciprocal effects is

ijk = ii +g1 +g +s +r +bk +Ejjk
where

= a mean common to all matings to which inference can be
made from this p2 set.

g = the common genic contribution of the ith paternal line.
g3 = the common genic contribution of the jth maternal line.

= the interaction between the genetic contribution of the ith
line and that of thejth line.

= the additional effect of using the ith line as male parent and
the jth line as female parent; = —r1, and r = o.

= the effect of the kth replicate, again the bk are assumed n.i.d.
(o, ai).

Ejik = the random effect peculiar to the ijth cross in replicate k;
the Ejk are assumed n.i.d. (o, a2).

Thus the two models differ only in that one allows for maternal effects
and the other for reciprocal effects. It is possible for both effects to
appear within a single set of crosses. A model containing both can be
written, but as will be seen later, the analysis of other effects becomes
more difficult.

(iv) Combining ability

The meaning of g, g1 and is discussed by Hayman (1954a, b)
and Kempthorne (1956) in biometrical genetic terms, and in terms of
general and specific combining ability by Griffing (1958). It should
be pointed Out that g is not general combining ability as defined by
Sprague and Tatum (1942), nor does fit their definition of specific
combining ability, for they defined these effects as deviations from the
mean of the F1's. In this paper, these effects are deviations from the
weighted mean of the p inbreds and the p(p — i) crossbreds. If there is
any difference between g and general combining ability, it is probably
trivial; s, in addition to Sprague-Tatum specific combining ability,
contains a component for the average deviation of the crosses from
their respective midparents. This component was termed the " mean
dominance deviation" by Hayman (1954a) who presented a method
for computing a sum of squares and testing this fraction of Variation
for significance.
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3. SAMPLING METHODS

(I) Random sample.

In nature, a species is often subdivided into easily identifiable
groups or lines such as clones, varieties, families, herds, flocks, etc. To
include all possible subgroups in a single diallel experiment is usually
impossible, so a random sample of p lines is used in the experiment and
inference extended to the entire population. Such an experiment thus
falls in the category of Eisenhart's (i4.) Model II, and the expecta-
tions of means and variances are accordingly affected.

With random sampling, 1u is the population mean, and the expecta-
tions of g1, g, s and m are all zero. The expectations of these terms
squared are

E(g) = E(g) =

E(s) = a and

E(m) =

With respect to reciprocal effects, they are fixed in the sense that
= —rn, but the p(p — i) /2 pairs of reciprocal effects can be assumed to

come from a large population of such pairs of effects, and thus E(r)
= a. It is essential to the analysis to assume that all effects are
independently distributed, and in order to make tests of significance, it
is necessary to assume they are normally distributed as well.

(ii) Fixed sample

The breeder may be interested in the variability among crosses of
certain particular lines. These lines are not a random sample, but
have been chosen by him because of certain merits possessed by each.
Model I of Eisenhart (1947) describes such experiments, and again the
expectations are affected accordingly.

For a fixed group of lines, /L is no longer the population mean, but
the mean of all possible replications of the experiment. By saying that
effects are fixed is meant that they sum to zero. Thus, 2Jg o, 2Jg = o,
and £m o; in addition Zs = o for all i and j. However, it is still
assumed that 2'r = o only for each zj combination. The effects g,
g1, m3 and are constants for the fixed sample, and the expectations of
their squares are the constants squared. In the usual sense, they have
no variance, but one can compute an average of squared effects; this
is done when one computes a mean square in the analysis of variance
of an experiment containing fixed effects. This average of squared
effects is computed by dividing the sum of squared constants by the
appropriate degrees of freedom. To avoid superfluous symbols, these
averages of squared constants will be called "variances of fixed effects",
and the same a2 symbolism will be used as for random sampling,
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except that the "variances" will be marked with a tilde superscript.
Hence, by definition

— i = Eg/p—i = =
= = p2o/(pi)2 and

l712/p—I G,

4. ANALYSES

The three analyses to be considered are (i) that as outlined by
Hayman (i), but without the subdivision of what he termed the
b sum of squares, (2) that of a p by p factorial such as used by Jinks and
Broadhurst (1963) and () that which the author has inferred from the
sums of squares given by Henderson (ig). The second is the cus-
tomary analysis of a two-way table of data; the third is a refinement
which subdivides the interaction term of the factorial analysis. Certain
terms are common in two different analyses, but for ease of reference
the terminology of the original papers has been maintained as much
as possible despite the redundance.

To keep mathematical symbolism to a minimum, each analysis will
be for a single replicate of a p2 diallel cross. To expand the analysis
to cover an experiment containing b replicates, crosses are summed
across all replicates and the analysis performed on these totals. All
divisors for sums of squares must be multiplied by b as are the co-
efficients of all variances except c72 in the expectations of mean squares.

5. SUMS OF SQUARES AND EXPECTATIONS

(i) Random sample

In order to subdivide the p2— r degrees of freedom, and the corre-
sponding sums of squares, for matings according to the three analyses
to be considered, it is necessary to compute eight sums of squares. Sums
of squares for a single replicate are given in table I along with their
expectations, assuming a random sample of lines. Expectations of a,
under the model for maternal effects (m.m.e.) and for o under the
model for reciprocal effects (m.r.e.) are also given.

In table i, a dot indicates summation from r to p over the values
with the omitted subscript, and the sigmas indicate summation over
all values of i or j combinations. Among the letter coded symbols,
a prime indicates that the sum of squares expresses variation from
the origin (or zero), while letters without the prime indicate that the
variability is from the mean. The arabic numeral i is used as the
symbol for the " correction term " because of the one degree of freedom
associated with this value. Numerical examples of the computation
of all values except P' and M' can be found in the paper by Hayman
(1954a), whereas these two values are simply the " uncorrected row"
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TABLE i

Coefficients for variation from origin in a single replicate of a diallel cross
among p lines chosen randomly

Sum of squares Symbol i2 2 2 u2
m.m.e.

2
m.r.e.
2

£Yj
E(Y,.)2/p

T'
P'

p2
p2

2p(p+1)
p(p+3)

p2
p

p2
p

p2
p

p(p—i)
p—i

E(Y.5)/p M' p2 p(p+3) p p p2 p—i
Y/p2 i p2 4 I I 0

(Y.+Y.)2/2p G' 2p2 2p(p+3) 2p p+' (p+3) 0

C' p2 2p(p+I) p2 (p+') (p+') 0

(Y.—Y.)/2p R o o o p— P(p_1) 2(p—I)

Z(Y0—Y)2/2 D o o o (p—i) (p—1) p(p—')

TABLE 2

Expectations of mean squares for a single replicate of a p2 diallel cross
when parental lines are random

Source d.f. S.S. m.m.e. m.r.e.
E (M.S.) E (M.S.)

Hayman Analysis

a (Parental lines) . p—i G'—2(1) a2+o+2a+2pa o22o2+2pu2

b (Genetic interaction) - (p—i) C'—G'+i o+ 02+ 2()
c (Av. maternal effects) p—i R 02+e02 02+202

d (Reciprocal effects) . — (p—I)(p—2) D—R 2 02+202

Fac
Mater
Pater

tonal Analysis
nal strains .

nal strains .
p—i
p—i

M'—i
P'— i

a2+a+pu+pa
02+02+p02

02+02+02+p02
a2+a2y2+Pa2

MxP . . (p—i)2 T'—P'—M'+i o+o a2+—_a+a

He
Dams
Sires

ndenson Analysis
. .

.
p—i
p—i

M'—i
P'—i a2+o+po

a+cr+o+pa
o+o-l-o+pa

Cross

Rema

es

inder

- (p—i)

(p—i)(p—)

C'—G'+i

D—R

a2+ 2-__-L7
a2

2(p—I)

02+202
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and "uncorrected column" sums of squares as they are usually
computed for a two-way analysis of variance.

Degrees of freedom, methods of computing the sums of squares, and
expectations of mean squares under m.m.e. and m.r.e. are given
respectively for each method of analysis in table 2.

Under the model for maternal effects, the Hayman analysis
yields valid variance ratio tests for the significance of maternal effects
in the ratio of c mean square/d mean square. The ratio of b mean square/d
mean square gives a valid variance ratio test for the significance of the
variance arising from genetic interaction. However, under this model
there is no test for the significance of genic variance. If the underlying
biology dictates the model for reciprocal effects, the c and d mean
squares have the same expectations. Under such circumstances, these
two terms in the analysis of variance can be pooled, as was done by
Griffing (x 958). With this model and replication, the significance of
reciprocal effects and of genetic interaction variance can be evaluated
by testing the pooled c and d mean square and the b mean square,
respectively, by the random variation mean square. While there is
no exact test of significance for genic variance, there is a conservative
variance ratio test. By a conservative test is meant that the actual
probability of a type I error is less than the o-Ievel given in a table of
critical values. Such a test for genic variance is the ratio a mean square/
b mean square. Under either model, all variance components can be
estimated.

Using the factorial analysis, there are valid variance ratio tests
only under the model for maternal effects. Maternal effects are tested
for significance by the ratio Maternal mean square/Paternal mean square,
while genic variance is tested for significance by the ratio Paternal mean
square/MXP mean square. To make a test of significance for variance
due to genetic interaction, replication is necessary, for there must be
an estimate of random variation in order to obtain the ratio M x P mean
square/Random variation mean square. If the model for reciprocal effects
is the correct assessment of the biological situation, the factorial analysis
is worthless. Not only are there no valid variance ratio tests, but it is
not even possible to estimate a, a and a. Because of the redundance
in expectations of the Paternal and Maternal mean squares, there are
but two independent equations with which to solve for three unknowns.

The analysis which is inferred from Henderson's equations for
estimation of variance components is particularly intended for the
model for maternal effects. The significance of maternal effects can
be evaluated by testing the Dams mean square by the Sires mean
square. The ratio of Crosses mean square to Remainder mean square
is an exact test of significance for the variance arising from genetic
interaction. In the ratio Sires mean square/Crosses mean square there is a
conservative test for the significance of genic variance, but it may be
too conservative if this type of variance is relatively small, i.e. when the
trait under study has low heritability. Under m.m.e., all variance
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components can be estimated. If the model for reciprocal effects
describes the biological sources of variation better than that for
maternal effects, the Henderson analysis yields valid tests for the
significance of cr and a if there is replication. To obtain these,
Remainder mean square and Crosses mean square are tested, respec-
tively, by Random variation mean square. There is no test for the
significance of o. Estimation of a o and a is possible; in doing
this, the Dams and Sires items of the analysis of variance should be
pooled.

(ii) Fixed sample

The sums of squares necessary for the three analyses of a diallel
cross involving a fixed set of p lines are given in table 3. This table

TABLE 3

Coefficientsfor variation from origin in a single replicate of diallel cross
among p fixed lines

Sum of squares Symbol p a r a2
m.m.e.

2
m.r.e.
2

ZYj
L'(Y.)2/p
Z(Y.5)1/p
Y2/p2

Z(Y1.+Y.)'/2p

T'
P'
M'
i
G'

P2
p2
p2
p2

2p2

2p2
p2
p
o

2p1

p'
0
0
o

0

p2
p
p
s

P+'

p1
0
P2
0

2

p(p—i)
p—I
p—s
0

0

2 (Y1+Y1)2/2+EY2
i>j

E(Y.—Y.)2/2p

C,

R

p2

0

2p2

0

p'

0

(p+')

p—I

L
2

2

0

2(p—I)

2' (Y1—Y5)5/2
I >j

D 0 0 0 (p—i) L p(p—i)

also includes coefficients for the "variances " of the fixed genic effects
and genetic interaction as well as that for maternal effects under
m.m.e. and coefficients for o under m.r.e.

The coefficients in table 3 differ in many instances from the
corresponding ones for random sampling. There are two reasons for
this; the first being the fact that fixed effects, when summed over all
values, add to zero. Again because they sum to zero, there is a negative
correlation within any set of p constants. Using the terminology of
"variances" of fixed effects, the expected covariance between any
two constants, say g. and g, in the same set is — — i. Thus,

E(g+g)2 = 2(a—a/p—I).

Table 4 contains the expectations of mean squares for the three
different analyses of the diallel cross when there is a fixed set of p
parental lines. In computing the expectations of mean squares, it is
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necessary to remember the mathematical definitions of the" variances"
which were given in Section 3(ii).

The Hayman analysis was intended to deal with experiments
involving a fixed set of lines. Indeed, the analysis even provides for
some g and g being identical by descent, this situation being detected
by Hayman's b2. Other implications of significance of the various

TABLE 4

Expectations of mean squares for a single replicate of a p2 diallel cross
when parental lines are fixed

Source d.f. ss• E (M.S.)
for m.m.e.

E (MS.)
for m.r.e.

Hayman Analysis

a (Parental lines) .

b (Genetic interaction)

c (Av. maternal effects)

d (Reciprocal effects) .

p—i

(p—i)

p—i

- (p—I)(p—2)

G'—2(I)

C'—G'+i

R

D—R

o2+o2+2p&2

02+
p—I
P 202+ -

a2

02+2pU2

a2+
p—s

02+202

02+202

Factorial Analysis
Maternal strains
Paternal strains. .

MxP . .

p—i
p—s

(p—s)2

M'— i

P'—i

T'—P'—M'+i

o2+pã+pä
02+pa2

2+

a2+u+pã
02+a2+pa2

p—s

Henderson Analysis
Dams . .

Sires . .

Crosses . .

Remainder . .

p—s M'—i a2+pa+pà
p—s P'—i a2+pa

2p 2
(p—I) C'—G'+i a+__ à

- (p—x)(p—2) D—R a2

a'+a+Pa

a2+2a

fractions of b have been considered byJinks Under m.m.e., the
genic variation among parental lines (a) can be tested by the mean
square dealing with variation due to average maternal effects (c);
variation due to genetic interaction (b) and that due to average
maternal effects can each be tested by the d mean square, which is an
independent estimate of random variation under m.m.e. If there is a
possibility of genotype by replicate interaction, Hayman (1954a) has
shown how the Random variation sum of squares can be subdivided
to provide independent test terms for b and c. Under m.r.e. all terms
can be tested by the Random variation mean square to yield exact
variance ratio tests. Again, with suspicion of genotype by replicate

2X
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interaction, the Random variation sum of squares can be subdivided to
provide independent test terms. The suitability of the Hayman
analysis for a diallel experiment involving a fixed set of parental lines
is shown in the fact that there are exact tests of significance for all
components of variation under each model, and likewise the magnitude
of each component can be estimated.

Under m.m.e., the factorial analysis again yields exact variance
ratio tests for all effects when there is replication. The Random varia-
tion mean square is used to test the Paternal and the M >< P mean
squares for the significance of and respectively; maternal effects
are tested for significance by the ratio Maternal mean square/Paternal
mean square. The factorial analysis is again completely inappropriate
for the model for reciprocal effects, for under this model, the factorial
analysis can provide neither tests of significance nor estimates of the
magnitudes of the different sorts of variability.

In a diallel experiment involving a species with differential maternal
effects, the Henderson analysis permits exact variance ratio tests for
all sources of variation when the parental lines are fixed. The signi-
ficance of maternal effects can be tested by the ratio of Dams mean
square to Sires mean square. Both genic effects and genetic interaction
can be tested by the respective ratios of Sires mean square and Crosses
mean square to the Remainder mean square. Under m.r.e., the
Henderson analysis allows for tests of the variation due to genetic
interaction and reciprocal effects when there is replication, for the
last two terms in the analysis of variance can be tested by Random
variation mean square. There is no exact test for genic effects, but a
decidedly conservative test does arise from the ratio Sires mean square I
Remainder mean square. Estimates of the magnitudes of all components
of variance can be obtained under either model.

6. REPLICATION AND POWER

As pointed out in a previous section, replication is virtually essential
to the analysis of a diallel experiment irrespective of model. In most
cases it is needed to provide an estimate of random variation (a2).
When a comparison within the p2 matings permits an independent
estimate of a2, this can be pooled with that resulting from replication
to add denominator degrees of freedom, and hence power, to tests of
significance in which this source of variation is the test term. In other
instances, the existence of genotype by replicate interaction may
require that the Random variation sum of squares be subdivided into
a number of independent test terms as described by Hayman (1954a)
in his numerical example. Corresponding procedures can be employed
in the other two analyses.

If one is more interested in assaying the significance of one par-
ticular variance, the relative power of different variance ratio tests
may dictate the analysis to be used. The following statements on
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power assume that there is replication and that all estimates of random
variation are pooled. Under both models and both methods of
sampling, the equivalent mean squares of the Hayman and Henderson
analyses give the more powerful test of a. For a fixed set of p lines,
the Hayman analysis yields the most powerful test of a under m.r.e.,
but under m.m.e. the relative power of the Hayman test for a will
probably be less than the tests one would employ in the factorial and
the Henderson analyses. The presence of a coefficient of a in the
expectation of the a mean square under this model necessitates the
use of the c mean square as a test term, and there is a consequential loss
in denominator degrees of freedom for the variance ratio test. The
larger the relative magnitude of a and the greater the loss in degrees
of freedom, the more adversely affected will be the power of the test for
genic effects within the Hayman analysis under m.m.e. A similar
argument can be used to show why the Hayman analysis will probably
yield a more powerful test for maternal effects,* irrespective of model.
Under m.r.e. the pooling of the c and d mean squares and testing them
by the Random variation mean square will yield the most powerful
test of a, again for both sampling methods.

7. SUMMARY

The expectations of mean square for three analyses of a diallel
cross are presented for a model containing maternal effects and for one
containing reciprocal effects. The expectations are additionally
affected according to whether the p set of parental lines are randomly
or selectively chosen.

The appropriate analysis of a given diallel experiment can usually
be chosen on the basis of model, the method of selecting parental lines
and the relative power of tests of the variances in which the geneticist is
particularly interested.
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