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1. INTRODUCTION

THE recombination frequencies in similar segments of diploids and
autotetraploids have been compared in several experiments (de
Winton and Haldane, 1931; Sansome, 1933; Oram, 1959; Welch,
1962). However, there appears to have been little discussion on the
expected relationship between these two variables. The hypothesis
of equality for two such frequencies can only be given as a first
approximation, since multiple crossing-over may be expected to
affect the two in different ways. In general it appears that multiple
crossing-over may lead to a higher tetraploid recombination frequency
than the corresponding frequency in diploids, even though the mean
frequency of crossing-over may not be increased.

In this paper the relationship between the number of crossovers
and the frequency of recombination in a particular region will be given
for a number of limiting models for diploids and tetraploids. The
distribution of the number of crossovers will then be specified, allowing
the relationship between the two recombination frequencies to be
derived. An upper bound will be given for the amount by which the
tetraploid recombination frequency could be expected in practice to
exceed the corresponding diploid frequency, when the frequency of
crossing-over is the same in the two cases.

2. THE RELATIONSHIP BETWEEN THE RECOMBINATION
FREQUENCY AND THE NUMBER OF CROSSOVERS

The recombination frequency between two loci may be expressed

in the following form:—
J = oo T01q1 +a2Gy F-

where ¢; are the frequency with which exactly ¢ crossovers are found
between the two loci, and g; are the mean recombination frequency given
by i crossovers. (It will be convenient to use the term ‘‘ crossover
rather than ‘ chiasma > in most places throughout this paper. Each
chiasma is assumed to be the cytological manifestation of a crossover,
and to give rise to an exchange of material between two strands.) The
a;’s of this relationship are determined solely by the configuration of
these crossovers. In this section the evaluation of the a,’s will be
attempted for diploids and tetraploids.

(i) Diploids
Since there are only two chromosomes involved for this case, the a,’s

depend only on the amount of chromatid interference. If chromatid
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interference is absent, as will be assumed throughout this paper, the
relationship is a simple one (Mather, 1938),

a0=0

a; = jfori =1,2 3.

(ii) Tetraploids

The analysis of gametic data in tetraploid organisms is complicated
by the fact that there are two homologous chromatids in each gamete,
and considering two linked loci, there are eleven modes of gamete
formation (Fisher, 1947). For evaluation of the recombination
fraction, however, strands are considered separately, and for two loci
on a single strand there are only two modes of formation, viz. recom-
binant and non-recombinant. Whereas the position of the centromere
will have considerable effect on the frequencies of the modes of gamete
formation, it is not of primary importance when strands are considered
separately, and under the assumptions to be considered it may be
neglected altogether. Thus calculation of the recombination frequency,
although it yields all the relevant information for two loci in diploids,
yields only portion of the information available from the diploid
gametes of tetraploids.

Besides the assumption of absence of chromatid interference,
additional assumptions about chromosome pairing must be considered
for deriving the g; for tetraploids. Four models will now be considered.

Model 1—bivalent formation. If there is no quadrivalent formation,
no change is expected from the relationship derived for diploids, viz,

a, =0 a; =% 1=1,2, 8, ....

For this relationship the bivalents have been considered separately,
and : refers to the number of crossovers per bivalent. The formation
of chiasmata in one bivalent may not be independent of their formation
in the other, since bivalent competition may occur (Mather, 1936a).
However, this phenomenon cannot affect the relationship for a single
bivalent, and for the moment can be ignored.

Model 2—random change of partner. All eight strands must be con-
sidered together in this model and ¢ refers to the total number of
crossovers between the two loci per quadrivalent. Strands are
associated pairwise at all points, and any strand is equally likely to be
paired with any other strand at a given point. A typical configuration
may be depicted as in fig. 1. A genotype with four distinctive A and B
alleles is used in formulating expectations in this and the following
tetraploid models. However, as shown by Fisher (1947), the recom-
bination frequency can be estimated even if only two alleles are
available at each locus, and all conclusions derived using the tetragenic
models still apply to the recombination frequency estimated from
digenic material. The assumptions of random changes of partner and
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no chromatid interference taken jointly mean that each of the twenty-
four possible non-sister crossovers is equally likely at any point.

Obviously @, must equal o, and @, = 1/4. By direct enumeration,
t.e. by writing out all configurations possible with two crossovers, a,
can be shown to be 5/12, and similarly other a; could be found. How-
ever, a recurrence relation can readily be found for the a; by considering
the fate of a single strand.

STRAND

NUMBER
1 A B,
2 A B,
3 A2 B2
4 A2 82
5 A3 B3
6 A3 . X 83
7 AA Bl
8 A, B4

Fi16. 1.—Diagrammatic representation of random change of partner model showing a typical
configuration with two crossovers.

Regarding only one of the A alleles, e.g. A; on strand 1, consider
the crossover configuration after ¢ crossovers between the two loci, and
the effect of adding another crossover adjacent to these. The pro-
bability that A, is connected to either B,, By or B, after ¢ crossovers
between the two loci is by definition a;. Then two of the twenty-four
crossovers which could be added adjacent to the first i crossovers will
alter this situation, i.e. restore the connection between A, and B,, and
the other twenty-two will not. If, for example, A, is connected to B,
on strand g, then the two crossovers leading to non-recombinant
strands would be those involving strands 1 and 3, or strands 2 and 3.
Similarly, if A, were connected to B, after ¢ crossovers, with probability
I —a,, then six of the twenty-four possible crossovers would lead to a
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recombinant strand. Thus the probability that A, is connected to
B,, B; or B, after i +1 crossovers is

a1 = 22/24 . a;+6/24(1 —a))
S @iy = 1/4+2/3a;.

Thus a; must be of the form ¢+ ;: , and since a; = 1/4 and

a; = 5/12, we can substitute to find / and m giving [ = —m = 3/4

ey = 3/4[1 - @]

One result from this calculation, which does not appear to have
been reported previously, is that under this model the maximum
recombination frequency in tetraploids is 3/4. This seems intuitively

B; Bz Bz B?
i
A A,
A, A,
REGION T P m
Ay A
A, As
v
By By B, B,

Fie. 2.—Diagrammatic representation of quadrivalent with one change of partner per
chromosome.

reasonable since after an infinite number of crossovers the A’s and B’s
could be regarded as oriented at random, giving a one in four chance
that any A; would be connected to B;.

Model 3—one change of pariner, no interference. The model of random
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changes of partner, although mathematically tractable, is unlikely to
be attained in practice, and the more realistic assumption of one
change of partner per chromosome is considered here. This model,
which is depicted in fig. 2, assumes that chromosomes are associated in
pairs at all points, with one point of partner change occurring at a
homologous point on each of the four chromosomes. Cytological
observation suggests that this type of pairing may occur frequently.

It may be seen from fig. 2 that regions I and III and regions II
and IV are equivalent. The ratio of region I to region II, however,
need not necessarily be constant, and in the following it will be assumed
that the point of partner change may lie at any point between A and B
with equal probability.

Let the ratio AP/AB be x. Then the probability that a crossover
will lie in region I is x/2, similarly for region II1I, and the corresponding
probabilities for regions II and IV are 4(1 —x). With a complete
noninterference model, the distribution of i crossovers between regions
I, II, III and IV is given by the terms in the multinomial

x  1—x x 1-—x\i
(2 Tt T) -
If all crossovers lie in the same region, say region I, then since there is
no chromatid interference the recombination frequency between A and
B will be 1/4. If crossovers lie in two adjacent regions, however, say
regions I and II, one-quarter of the A;B, strands will remain unbroken,
and likewise one-half of the A,B, and A B, and all the A B; strands will
be unbroken, giving the overall recombination frequency as

3, ! L
;<4+2+°+2)_16

Other distribution types give recombination frequencies as follows:
regions I and III, 1/2; regions I, II and III, 5/8; and regions I, II,
III and IV, 3/4.

The probabilities of the different distribution types may now be
evaluated from the multinomial, giving the recombination frequency as

{6 + (]l 6 (3]

il reon=(]
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Since x is assumed to be distributed with frequency function dx in
the range (o, 1), the mean recombination frequency for ¢ crossovers
is obtained by integrating the above expression for x in the range
(0, 1), giving on simplification

3 Ei+2 1 Ii+1_l_
“=s7) Tt i

Model 4—one partner exchange, crossover repulsion. The same conditions
as in model g apply, except that crossovers instead of forming inde-
pendently are now assumed to repel each other. Thus, if two cross-
overs are formed between the two loci, they will repel each other into
opposite arms of the quadrivalent. Similarly three crossovers will lie
on three different arms, and four on four different arms, while the
positioning of any subsequent crossovers beyond four is arbitrary. No
increase in the frequency of crossovers is postulated, but merely a
spreading out in the region AB. Under this model

@ =0, ay =1[4, a5 =1[2, a5 =58,
a; =34, 1 =4,5,6, ...

The importance of this model is that it supplies an upper bound to
the frequency of recombination which may occur for a given number
of crossovers. The maximum recombination frequency of 3/4 is only
attained in the limit with an infinite number of crossovers under models
2 and 3, whereas under this model it is reached with four or more
crossovers. In addition it may readily be seen that, in the absence of
chromatid interference, for neither one, two or three crossovers can a
greater frequency of recombination be given than that predicted by
this model.

3. THE UPPER LIMIT OF RECOMBINATION

In the absence of chromatid interference, it is evident that with
one or more changes of partner between. two loci there is an upper
limit of 75 per cent. for the recombination frequency. The case where
a quadrivalent is formed with all points of partner change lying outside
the interval between the two loci must be regarded with respect to the
recombination frequency between these loci as equivalent to bivalent
formation. (However, when considering the fate of both chromatids
in a gamete the formation of a partner change outside the two loci
cannot be ignored.) In general, where a point of partner change lies
between two loci in a fraction p of cases, the upper limit for the recom-
bination frequency becomes

#(0-75) +(1 —p)(0°50) = 0-50+0-25p.

By the argument advanced in the previous section, it appears in-
tuitively correct to saythat the upper limit of recombination in an x-ploid
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organism is Jf—x—l The attainment of this recombination fraction,
however, depends on the occurrence of a sufficiently high frequency of
partner changes. With hexaploids for example, the limit 5/6 is only
reached as the number of partner changes becomes infinite, the
approach to the limit being oscillatory, and certain combinations of
partner changes may cause the limit to be exceeded slightly.

4. THE RECOMBINATION FREQUENCY BETWEEN
UNLINKED GENES

The recombination frequency when defined in the usual way has
no meaning when applied to two unlinked genes in a tetraploid.
However, it may be shown that the amount of recombination given by
two unlinked genes is equivalent to that given by two genes linked with
a recombination frequency of 3/4. Consider the gametic array given
by two linked genes under the model of random partner exchange
(model 2). The properties of the transition matrix defined by this
model are such (see e.g. Moran, 1g62) that after a sufficient number of
crossovers the genes at the two loci will be combined essentially at
random, which is equivalent to the array given by unlinked genes.
The limiting recombination frequency for the model of random partner
exchange has been shown to be 3/4, thus demonstrating the above
assertion.

In practical terms, however, this result cannot be taken to mean
that the amount of recombination between unlinked genes is greater
in the tetraploid than in the diploid. In this context it is perhaps more
relevant to consider both alleles in the gamete of the tetraploid. For
the tetraploid, as well as the diploid, two randomly chosen unlinked
genes in the zygote have one-quarter chance of both being present in
the gamete, one-half chance of one being present and the other absent
and one-quarter chance of both being absent. Double reduction will,
in fact, reduce the proportion of the recombinant classes in the
tetraploid to a little below one-half.

5. THE RELATIONSHIP BETWEEN DIPLOID AND
TETRAPLOID RECOMBINATION FREQUENCIES

In order to specify the recombination frequency for either diploids

or tetraploids, it now becomes necessary to give values for ¢; in the

relation
Y = aygotag+... +a,4; +....

Since no realistic crossover distributional theory exists, it is necessary
as a first approximation to calculate y under the assumption of no
chromosome interference, and ultimately to consider what effect
chromosome interference will have on this calculation.

The assumption of no chromosome interference is equivalent to
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assuming a Poisson distribution of crossovers. If the mean number of
crossovers is m, we have
e~ "mi

q; = K
The recombination fraction for diploids, y p, is equal to $¢, +4¢, ...
= (1 —q,), giving the well-known relation, (cf. Haldane, 1919) '

Jp = (1 —e™).... (1)

The relationship between y, and the tetraploid recombination
fraction y; is dependent first on the relative frequencies of crossovers
between the two loci in the diploid and tetraploid, and secondly on
which of the four tetraploid models is used. The relationships in this
section will be derived assuming that the mean frequency of crossing-
over per strand is the same in the diploid and tetraploid, i.e. that the
mean number of crossovers in the tetraploid is twice that in the diploid.
This particular choice will be discussed briefly in the following section.

Model 1. With no assumptions about the crossover distribution
necessary in this case, we have

Jr =Jp-
e~ (m')i

i
where m’ is the mean number of crossovers for a quadrivalent. Since
we wish to compare the recombination frequencies for diploid and
tetraploid when the mean frequencies of crossing-over are the same,
we must place m’ = 2m.

Then y; = agqy+ay9; +-..

26 =
(%)

Then substituting for m from equation (1) we get

yr = i[r —(x —%)"ﬂ. (2)

This is given as curve (2) in fig. 3.

Model 2. The value of ¢; for this case may be given as

B> o

Models 3 and 4. Once again for both models
e~2m(2m)?
7=
Substituting the values previously found for a; gives for model g

_3_ ' . i
yT—4—4e —2m[1—e 1.
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08,

TETRAPLOID RECOMBINATION FREQUENCY —yT

A A A A 3

o1 02 03 04 05

DIPLOID RECOMBINATION FREQUENCY —yD

Fic. 3.—The relationships between diploid and tetraploid recombination frequencies under
four tetraploid models.
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Substituting for m from equation (1)

b g1
T = log (1 —2yp) T2 ta (3)
Similarly for model 4 we have
3 3 I I
Ir =y —e=2m I:; +m+ 2 m*+ & ma:l (4)

which together with equation (1) forms the parametric equations for
the relation between y; and yp, graphed as curve (4).

6. DISCUSSION

Although the above relationships between y; and y, have been
derived on the assumption of equal frequencies of crossing-over in the
tetraploid and diploid, they could equally well be calculated assuming
different rates of crossing-over in the two cases. The relationships given
are not those necessarily expected in practice between the two fre-
quencies, but those (for the particular models) expected on the hypothesis
that the process of crossing-over is not affected by a doubling of the
chromosome set, including such events as changes of partner, etc. Since
the frequency of crossing-over rather than the frequency of recombina-
tion is the fundamental biological quantity, this appears to be a more
appropriate hypothesis to take than the hypothesis of equality of the
two recombination frequencies.

It may be seen from the four curves in fig. g that considerably
different relationships between yr and yp, are expected depending upon
which of the four tetraploid models is used. In view of the fact that
none of the models can be expected to be exactly applicable, it does
not seem possible to give a single relationship which will apply in
practice. At best, upper and lower bounds for the value of y; for a
given yp can be calculated. It will be argued below that under
conditions expected to apply in practice, curves (4) and (1) represent
such upper and lower bounds.

As pointed out previously the value y; given by model 4 represents
an upper bound to the amount of recombination which may be
observed for a given number of crossovers. The curve (4) is therefore
an upper bound for y; given y,, and assuming no chromosome or
chromatid interference. Since the positive value of the difference
yr—Jyp is attributable to multiple crossing-over, it is evident that
positive chromosome interference must cause this difference to be
reduced. The effect of chromatid interference is more difficult to
assess, but it appears that a small amount of positive chromatid
interference would tend to lower the difference yr —yp, and negative
interference to raise it. Thus it appears that in the absence of negative
chromosome or negative chromatid interference, neither of which is
likely in practice, the curve (4) represents an upper bound for y; for
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a given yp when the crossover frequencies are the same in the corre-
sponding diploid and tetraploid segments. The value of y, could only
exceed the value yr when there was bivalent competition, the expected
excess even for a strong competition being trivial, so that curve (1)
can be given as a lower bound for y; for a given yp,.

One use of the upper bound may be illustrated as follows. When
comparing data on the recombination frequencies for two loci in
diploids and tetraploids, two questions may be asked :—

1. Whether the two recombination frequencies differ significantly,
and

2. Whether, if the tetraploid recombination frequency is greater
than the diploid frequency, the difference falls significantly
outside the bounds given by equation (4), i.e. whether the
increased recombination frequency necessarily reflects a rise in
the frequency of crossing-over.

The only data which appear suitable for these comparisons are
those of Oram (1959). Those studies in -which recombination fre-
quencies are calculated from first backcross data could not show
increases in the tetraploid due to change of partner and multiple
crossing-over, since the recombination frequency is calculated on the
assumption of single crossing-over. As discussed by Mather (19365)
these estimates are unlikely to be accurate at distances of over fifteen
map units.

Considering the sugary and glossy loci in maize, Oram finds:—

yp = 0+282-40-009
yr = 0°556-+0-062.

The difference yp —yp may be shown to be significant at the one per
cent. level of significance. The second test of significance may be made
by plotting the point (0-282, 0'556), and its associated 95 per cent.
confidence limits in fig. 2. All points within the confidence interval
are found to lie to the left of the curve given by equation (4). Thus an
excess in y7 of this order could not be attributed to the effect discussed
in this paper, but could, however, reflect a rise in the frequency of
crossing-over in the tetraploid.

7. SUMMARY

It is shown that multiple crossing-over may be expected to affect
the diploid and tetraploid recombination frequencies in different ways.
As a result the tetraploid recombination frequency for a particular
region may exceed the corresponding diploid frequency even when the
mean frequency of crossing-over is the same in the two cases. An
upper bound is given for the amount of such an excess which may be
expected in practice.
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In the absence of chromatid interference, the upper limit of

recombination in tetraploids is shown to be ‘3. In general, in an x-ploid

species, provided the number of changes of partner is sufficiently high,

. . 3 . x - I .
the upper limit of recombination is - It is shown that the amount

of recombination given by unlinked genes in tetraploids is equivalent

to that given by two genes linked with a recombination frequency of ‘—‘r:

A discussion is included of the interpretation of data from experi-
ments in which the diploid and tetraploid recombination frequencies
are compared. The data from such an experiment of Oram (1959)
are used in illustrating this analysis.
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