
FREQUENCY-DEPENDENT SELECTION

BRYAN CLARKE
Department of Zoology, West Mains Road, Edinburgh, 9

and

PETER O'DONALD
Department of Zoology, University College ofNorth Wales, Bangor

Received 30.X.63
1. INTRODUCTION

WRIGHT (1948) has set up a mathematical model of a balanced
polymorphism in which the selective values of the different genotypes
depend upon the frequencies of the genes involved. Lewontin (x 958)
has suggested a similar model. Maynard Smith (1962) has investigated
the maintenance of polymorphism by disruptive selection. Apart
from these works, frequency-dependent selection has received little
attention.

In this paper we describe some models which may be applicable
to balanced polymorphisms involving mimicry (Sheppard, 1959) or
apostatic selection (Clarke, 1962a, 1g62b). In such polymorphisms
the selective values depend upon the frequencies of the phenotypes,
rather than upon the frequencies of genes. This dependence is
reflected in a negative relation between the selective value of a genotype
and the frequency of its phenotype.

2. GENERAL CONDITIONS FOR EQUILIBRIUM
Ifp is the frequency of the gene A, q is the frequency of its allele

A', and p+q = i, then in a population mating at random the
frequencies of the genotypes AA, AA1 and A'A' will be in the ratio
p2:2pq:q2.

If the generations are discrete and the selective values of the three
genotypes are respectively a, b and c, they will reproduce in the ratio
ap2 : 2bpq :cq 2, In the next generation the frequency of the gene A'
will be

— bpq+cq2
q ap2+2bpq+cq2

(I)

and the change in its frequency

— bpq+cq2 — (q—q2)[b—a-—q(2b—a—c)]
q —

ap2+2bpq+cq2 —q a+2q(b—a) —q2(2b—a—c) (2)

When there is a balance of gene frequencies, 4 q will be zero and
the non-trivial equilibrium frequency of A' will be (Fisher, 1930)

b—a
2b—a—c' (3)
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As Lewontin (1958) pointed out, these formu1 are true whether
or not the selective values are constant.

3. SOME MODELS OF FREQUENCY-DEPENDENT SELECTION
Four models are described below. The first two illustrate the

effects of frequency-dependent selection acting alone, and the second
two show the results of a combination of frequency-dependent and
frequency-independent selection. The first and third models deal
with selection acting upon a pair of alleles whose heterozygote exhibits
a phenotype which is clearly distinct from both homozygotes, and
which resembles neither of them. This could happen if each of the
three possible phenotypes mimicked a separate model, or if the
heterozygote provided a unique environment for a particular form of
parasite. The second and fourth models deal with the commoner
situation, in which one allele is completely dominant to the other.

A later paper (Clarke, in press) will consider the effects of frequency-
dependent selection upon alleles with incomplete dominance or
intermediate heterozygotes.

(i) Frequency-dependent selection when the heterozygotes are distinct

Suppose that frequency-dependent selection acts alone, and that
the selective value of each phenotype is negatively related to its
frequency. If the heterozygotes behave as a distinct class, then we have

Genotypes AA AA' A'A'
Frequencies after

random mating p2 2q q2
Selective values a = I —tp2 b = i —2tpq C = I
Frequencies after

selection p2(i _p2) 2pq(r —2tpq) q2(i —tq2)

where t represents the relation between phenotype-frequency and
selective value.

When a mutant gene appears in a population, it will spread if the
heterozygote is at a selective advantage to the wildtype homozygote.
If the allele A' newly arises by mutation, q will be extremely small and
therefore b will be greater than a (i —2tpq>I —tp2). The gene will
spread. Similarly, if A appears in a population composed entirely
of A1, b will be greater than c, and A will increase in frequency.

If the values of a, b and c given above are substituted in equation
(s), the equilibrium gene-frequency is found to be = o5 whatever
the value of t. At equilibrium a = i —1/4, b = i —1/2, C = i —t/4.
The heterozygote is thus at a selective disadvantage to both homo-
zygotes.

It can easily be shown that this equilibrium is stable. If p =
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and q = -—x, when x is small the terms in x2 and above can be
neglected. The value of x in the next generation is then

(8—4t) x.
(8—3t)

Thus x'<x as long as t>o. The equilibrium is therefore stable.

(ii) Frequency-dependent selection with dominance

If the allele A is dominant to A1 for characters under selection, we
have

Genotypes AA A1A'
Frequencies after

random mating 2pq q2
Selective values a i —t+tq2 b = i —t+tq2 c = i —tq2
Frequencies after

selection p2(i —t+tq2) 2pq(I —t+tq2) q2(i —tq2).

Since b = a, the allele A1 will spread only very slowly from an initially
low frequency. The allele A, on the other hand, will spread more
quickly, since when q is large b will be greater than e.

Substituting the values of a, b and c in equation (3), we find that
= /o = 07071 whatever the value of t. At equilibrium the

heterozygote has a selective value equal to that of the homozygote
AA, and the two phenotypes are present in equal numbers. The
equilibrium is stable because, if p = i —V'o5+x and q =
we find that -

(I+O'5t—t/2\
x I—o5t )X

and x' < x for any positive value of t.

(1H) Combined effects of frequency-dependent and frequency-independent
selection when the heterozygotes are distinct

It is very likely that in natural conditions some components of the
selective forces will be independent of the frequencies of the phenotypes.
When the heterozygote shows a clearly distinct phenotype the situation
can be represented as follows:

Genotypes AA AA' A1A'
Selective values a = W1(i_tpz) b = W2(I—2tpq) c = W3(i—tq2).

W1, W2 and W3 are the frequency-independent components of the
selective values of the three genotypes.
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The gene A1 will spread from an initially low frequency if

W2(i —2tq) >W1(i —t+2tq),

and similarly A will spread if

W2(i —2tp)>W3(I —t+2tp).

Substituting the values of a, b and c in equation (3), we find that 4 is
the solution of

W2—W,+tW,—4(2tW2+3tW1+2W2—W,—W3)
+3t42(2W2+W,)—t43(4W2+W,+W3) = 0. (.)

Certain values of W,, W2, W3 and t will give three solutions between
o and i. In other words, certain combinations of frequency-dependent
and frequency-independent selection can give rise to three non-trivial
equilibria. Not more than two of these will be stable. For example,
suppose that W, = W3 = i, W2 = o8 and t = 03. Then equation
(a.) becomes

O.I_O.984+2.3442_I.5643 = o ()
the solutions of which are (approximately) 4 = o 15, 4 = 050 and
4 = o85.

It is possible to test the stability of these equilibria by differentiating
the left-hand side of equation () and then inserting the values of 4
in the resulting expression. If, when a particular value of 4 is inserted,
the sign of the expression is positive, then the equilibrium is unstable.
If the sign is negative, the equilibrium is stable (Lewontin, 1958).
The logic of this method derives from the fact that the sign of 4q is
determined by the factor [b—a—q(2b-—a—c)].

The calculation shows that the equilibrium 4 = o5 is unstable,
since at that point there is a positive relation between q and zlq. The
other two equilibria are stable. At all three equilibria the hetero-
zygotes are at a selective disadvantage to both homozygotes.

If the heterozygote has a frequency-independent advantage over
the homozygotes (W1<W2>W3), there will be a single equilibrium.
Even at this point, if t is large in relation to the differences between
W,, W2 and W3, the heterozygotes may be at an overall selective
disadvantage.

(iv) Combined effects of frequency-dependent and frequency-independent
selection with dominance

IfA is dominant to A' for characters subject to frequency-dependent
selection, the situation can be represented as follows:

Genotypes AA A1A'
Selective

values a = 'W1(x —t+tq2) b = 'W2(x —t+tq2) c = 'W3(i —tq2).
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The gene A1 will spread from an initially low frequency if W2>W1.
The gene A will similarly spread if W2(i —2tp) >W3(r —t+2tp).
Substituting the values of a, b and c in equation (s), we find that 4 is
solved by

(W2—W1)(i —t) —4(2W2—-2tW2+tW1—W1—--W3)
+t42(W2W1) —143(2W2—W1+W3) = o. (6)

This equation allows three possible solutions, but usually only one
is a stable equilibrium. For instance, if W1 = W3 = i, W2 = o8
and t = 03, then 4 = o26 or 4 = o88. By differentiating the left-
hand side of equation (6) and substituting the values of 4, we find that
only the latter equilibrium is stable. At this point the heterozygote
is at a selective disadvantage to both homozygotes, although this is a
rarer occurrence in the presence of dominance. It can never happen,
of course, if W5 exceeds W1 and W3. When W2 = W1, (i.e. when A
is dominant for all components of fitness) there is a single stable
equilibrium at which ____________

— /W2(t—i)+W3
q j t(W2+W3)

4. THE TIMING OF SELECTION
So far, we have assumed that both components of selection act

simultaneously. In natural conditions, however, different kinds of
selection will often operate at different stages of the life-cycle. If
frequency-dependent selection acts first, the formuke given above will
still be applicable, but if some component of frequency-independent
selection is the first to act, the formuke may have to be modified.
The proportions of the three genotypes may be altered before
frequency-dependent selection comes into action. Modification will
only be necessary, however, when the preceding selection is strong (say
greater than io per cent.).

5. CONCLUSIONS AND SUMMARY
We have set up a number of mathematical models to represent

situations in which the selective values of genotypes are negatively
related to the frequencies of their phenotypes. These models may
apply to mimetic and apostatic polymorphisms.

When frequency-dependent selection acts alone, the heterozygote
at stable equilibrium may be at a selective disadvantage to both
homozygotes. Frequency-dependent selection is able to maintain a
balanced polymorphism even in the face of frequency-independent
selection against the heterozygote. There may then be more than
one stable equilibrium.

These results show that instantaneous estimates of the fitness of
genotypes in a polymorphic population may give a misleading picture
of the stability (or otherwise) of the polymorphism.

0
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