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1. INTRODUCTION

BENNETT (1958), Barker (1958) and Shaw (i) have all recently
discussed the population genetics of the X-linked condition "sex-
ratio" in Drosophila pseudoobscura. The purpose of the present paper
is to put forward a mathematical model considered more appropriate
than that used by Bennett and Shaw, and to examine the subject more
closely than did Barker.

The condition " sex-ratio "was first studied in detail by Gershenson
(1928) in Drosophila obscura, and later by Sturtevant and Dobzhansky
(1936) and Dobzhansky (i4) in D. pseudoobscura. Sturtevant and
Dobzhansky showed that "sex-ratio" is associated with an inversion,
and is thus not simple genetically. However, in the present paper
the words " gene" and "locus" will frequently be applied to it in
order to simplify the mathematical arguments, but its more complex
nature should be borne in mind. An early record of a similar condition
in Drosophila affinis occurs in The genetics of Drosophila by Morgan,
Bridges and Sturtevant (1925).

Briefly, males carrying the abnormal X-chromosome (Xr) produce
few or no sons, but nearly twice as many daughters as are produced
by normal males. Gershenson remarked that, in the absence of
differential viability, the abnormal chromosome would increase in a
population until there were no males left. Sturtevant and Dobzhansky
also noted this, but added that "the algebraic analysis of populations
containing 'sex-ratio' is difficult, and may best be postponed . . .
They found that the abnormal chromosome was present in apparent
equilibrium in natural populations.

Wallace (1948) conducted an extensive series of experiments in
which he ran population cages and also attempted to estimate the
viabilities of the several genotypes directly. It is the results of these
experiments to which Bennett, Barker and Shaw have applied their
models.

2. POPULATION MODEL
The study of selection on loci which affect the sex-ratio is made

difficult by the relevance of arguments concerning the expenditure
incurred by parents in rearing offspring, as has been emphasised by
Bodmer and Edwards (1960). In order to avoid these difficulties in
the present problem it is necessary to postulate that the individual
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expenditures on male and female offspring are equal, and that there
is no differential viability amongst the offspring between fertilisation
and the end of the period of parental expenditure. These restrictions
on the model will be discussed later.

Let the genotypes XX, XXr, XrXr, XY and XrY have effective
frequencies at sexual maturity u, v, w, x andy, where u+v+w+x+y= I,
and let their relative viabilities be i, a, b, i and c, respectively. Further,
let the proportion of males born to XrY fathers be (i —t). Then the
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relative frequencies of the genotypes in the next generation can be
found from table i. These are given by

Tu' = x(u+v)
Tv' = a(x(w+v)+ty(u+v))
Tw' = bty(w+4v)
Tx' = (x+(I—t)y)(u+4v)
Ty' =

where T is such that u' +v' +w' -f-x' +.y' = i. The effective gene ratios
at maturity in the next generation are therefore given by

a(x(w+v) +ly(u+v)) +2bcy(w+v)=
x(u+v) +a(x(w+v) +ty(u+v))

for females and T'm = c(w+v)/(u+v) for males. The original gene
ratios are given by r1 = (w+v)I(u+4v) and rm =y/x. From these
relations

a(r+tr,,,) +2btr1rm
Tf= I+a(r1+trm) and r = cr1 . . . (i) and (2)

At equilibrium T'f = TI = Tel (say) and T'm = Tm = rem, so that rem = CTef
and hence

are1( +t't) +21WtT2efr1 =
aT1(+ct) +1

Since ref is not zero, for then the equilibrium would be trivial,

— a(I+2ct)—2
ref a(i +2ct) —4bct.
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This is the equilibrium effective female gene ratio at maturity. If
there is no differential fertility between genotypes of the same sex,
then it is the actual ratio at maturity. The male ratio has already
been given by rem = CTef

The equilibrium gene ratios before zygotic selection, Se! and 5em'
may be found by putting the ratios after selection in equations (i)
and () and setting a = b = c i, whence

-r,f+trem +2trefrem d5ef =
+Tef+trem

an =
TCf.

Since the genotype frequencies may be completely expressed in
terms of the gene ratios of the previous generation, as is shown below,
it is clear that the problem may be exhaustively examined mathe-
matically in terms of these ratios.

T*u' = -
T*v' = a(rf-j-trm)
T*w' = btTfrm
T*x' = (-+(I—t)rm)
T*y' = c(-4+(I—t)r,)rf.

In particular, the conditions that the equilibrium is stable may be
evaluated by examining the properties of the gene ratios when they
are near to their equilibrium values. It transpires that the equation
for the latent roots of the generation matrix of the gene ratios near
equilibrium is

4bCt(act—') +a b(a—2) +a
a2(i +2ct)2—8bct a2(x +2ct)2—8bct —

the condition for stability being that the absolute values of both
roots must be less than r.

If the factor 2ct is regarded as an overall viability, this equation
is formally identical to that considered by Bennett, who stated, without
proof, that the equilibrium is stable if and only if both the numerator
and denominator of the expression for are positive, that is if

a(I+2ct)>2 and a(I+2ct)>4bct.
A proof of this statement follows.

Putting a(i +2ct) H, 2 = B and 4bct = A, Tef = (H—B)/(H—A)
the notation being specifically chosen to draw an analogy with the
autosomal case.

Writing the equation for the latent roots as = o it
is easy to show that

L M — — B(H—A)+A(H—B),+ — H2—AB
and hence that

(H—A)(H—B)i+L+M = H2—AB
T2
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From these relations, if H>A and H>B then L+M.<o and
i+L+M>o, and if H<A and H<B then L+M<o andi +L+M<o.
Furthermore, the reverse holds true, since H—A and H—B must be
of the same sign for the female gene ratio to be positive.

The next stage in the proof is to show that —' <L <o and
—i <M<o for all possible values of the viabilities that do not lead
to trivial equilibria.

Suppose H>A, H>B. Then the denominators of L and M,
H2—AB, are positive. Further, since a(i +2ct) >4bct and a(I +2ct) >2,
a/b>4ct/(T+2ct) and a>2/(I+2ct). Hence a+a/b>2, or (a—2)+
a/b>o. Therefore the numerator of L, —4ct(b(a—2) +a), is negative,
and L<o.

Similarly, since a(x +2ct) >2, 4ct(aCt— ')> —4ct/(I +2ct). Hence
4ct(act—I)+a/b>O; the numerator of M, —2(4bct(act—1)+a), is
negative, and M<o.

Again, clearly

a(' +2ct) +2act(I +2ct) >4bct +4Ct,
or a(i +2c1)2—4bct----4ct>o,

and hence a2(i +2ct)2—8bc1---4ct(b(a—2) +a) >0. Thus the numerator
of the fraction i+L is positive, so that x +L>o and L> — i.

Similarly, since

a(i +2ct) +2act(I +2et) >2 +8bc2t2,
a(i +2ct)2—2—8bc2t>o

and a2(i +2ct)2—8bct—2(4bct(act-—') +a) >0.

Thus i+M>oandM>.—i.
When H<A, H<B, the same relations hold but with the inequality

signs reversed, so that the numerators of L and M are positive. But
since then H2<AB, the denominators are negative, and L<o and
M<o are still true. Similarly, L>—I and M>—I, so that for all
values of the viabilities leading to non-trivial equilibria

—i<L<o and —i<M<o.

Nowthe condition forstability is —L± /L2—4M <. Knowing
the possible values of L and M, it is apparent that an equivalent
condition is

—L+/L2—4M<2,

whence

L2—4M<4+4L+L2,

and I+L+M>o.

Hence H>A, H>B are necessary conditions for stability. The
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condition for instability is similarly

—L+v"L2 —4M>2,
whence i+L+M<o.
Therefore H <A, 11< B are necessary conditions for instability, and
hence H>A, H>B are necessary and sufficient conditions for stability.

3. APPLICATION TO WALLACE'S DATA
This model may now be applied to Wallace's data.
Wallace's experiments were of two kinds. First, he ran four

population cages, two at i6-° C. and two at 25° C., in which the
foundation stocks consisted of known numbers of the several genotypes.
Samples of eggs were taken from these cages every month or so, and
assayed in order to determine the frequencies of the genotypes.
Secondly, in a series of subsidiary experiments, he made quantitative
estimates of the following components of fitness of the different geno-
types: larval competition; longevity; fecundity (female); sexual
activity (male); and egg hatchability (female). By multiplying these
estimates together he obtained an overall selective value for each
genotype, and he quoted the maximum and minimum values that
he considered possible at each temperature. These viabilities were
given relative to that of the normal in males and of the heterozygote
in females. Wallace multiplied his values for the relative viabilities
of the abnormal males by a factor of two in an attempt to express the
selective advantage due to the abnormal sex ratio amongst their
offspring. However, this advantage has already been allowed for
in the present model, so that it is necessary to remove this factor of
two before using these values. Wallace's mean viabilities at each
temperature, expressed relative to that of the normal in each sex,
and with the factors of two omitted, are given in table 2. Darlington
and Dobzhansky (1942) studied the effect of temperature on the
parameter t and found a value of o9382 at 25° C. and a value of
o9878 at i6° C. The equilibria, which are stable, corresponding
to these values of a, b, c and I are given in table 3.

In Wallace's population cages the X. chromosome was lost com-
pletely at 25° C. (and hence the gene ratios were all zero), whilst at
i6° C. the following gene ratios were obtained from samples of eggs
taken after approximately twelve generations of selection (when the
experiment was ended):

Cage 12. Female: o•o62; Male: o'o95.
Cage 13. Female: oo48; Male: oo63.

Even when the sizes of the egg samples are taken into account it is
apparent that these observed ratios are incompatible with the theoretical
equilibrium ratios. It must therefore be concluded that either the
present model is inadequate, or Wallace's values for the overall
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viabilities differ from the viabilities which actually pertained in the
population cages. Partial vindication of the model could be obtained
by seeing if viabilities exist that would make the model populations
approach the observed equilibria at the correct rates. But before
doing this it is appropriate to examine the limitations of the model,
of which there are four main ones:

(i) Population and progeny sizes are assumed infinite.
(2) Generations do not overlap.
() Parental expenditures on individuals of either

equal.
(4) Viability is assumed not to be sex-differential

period of parental expenditure.

TABLE

Wallace's mean viabilities

Temperature

Genotypes

XX
i

XXr
a

XrXr
b

XY
i

XrY
c

25° C.

i6° C.

I

I

3384

1263

0059

0392

I

I

0355

0711

TABLE 3
Equilibrium gene ratios with Wallace's viabililies

Temperature

Before genotypic selection After genotypic selection

Female Male Female Male

25° C.

i6° C.
0537

o637

o654

0536

0654

0536

0232

o•38I

That the first limitation is unimportant is shown by Barker's
computations on an electronic digital computer, by which he compared
the changes in gene frequency due to selection in infinite populations
and populations the size of Wallace's. Although, as will be mentioned,
Barker's work is open to criticism in some respects, the comparisons
remove any doubt that the assumption of infinite population and
progeny sizes is important in this instance.

The fact that the model does not include the overlapping of
generations is unlikely to matter very much, especially in the present
context where there are so few generations.

The third limitation is also reasonable: it is unlikely that parental

sex are set

during the
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expenditure is significantly sex-differential in Drosophila species, since
sexual dimorphism is not noticeable until well after parental expend-
iture must have ceased, and also since the normal sex-ratio is about
one-half.

As far as the fourth limitation is concerned, in Drosophila all the
fertilised eggs are laid whether they are viable or not, so that sex-
differential viability before the end of the period of parental expenditure
does not exist. It could be argued that parental expenditure on
inviable eggs differs from that on viable eggs, but, as Gershenson
showed, such a small proportion of eggs is inviable that this could
hardly be important.

It is thus apparent that, given correct viabilities, the model should
be a good approximation to reality, and it must be concluded that
Wallace's viabilities are inadequate estimates of the relative selection
pressures involved.

In order to discover whether reasonable values for the viabilities
exist which would make the model compatible with Wallace's experi-
mental findings, the original recurrence relations in the genotype
frequencies were programmed onto EDSAC II, the Cambridge
University Mathematical Laboratory's high-speed electronic digital
computer. The following variables could be set at the start of the
programme:

u, v, w, x and y, the initial genotype frequencies;
a, b and c, the relative viabilities;

and t, the proportion of females born to XrY males.
The output, which could be printed to any reasonable number of
figures, consisted of the following information, printed every nth
generation, where n could be set beforehand:

the relative frequencies of the five genotypes;
the sex ratio;
the gene frequencies in males, females, and in the whole

population;
and "T ".

The programme could be set to print this information either before
or after genotypic selection, and to run for any number of generations.

It was not considered worthwhile to write a comprehensive
programme which would search for the viabilities which give the
best fit to Wallace's selection data. Thus there may be better values
than those finally arrived at, so that the viabilities quoted below
cannot be considered proper estimates. Nevertheless, the investigation
showed that it is possible to simulate Wallace's results satisfactorily,
with certain reservations.

Figs. I, 2, 3 and show the simulated selection response curves
together with the 95 per cent. fiducial limit curves, in terms of genotype
frequencies before zygotic selection, for Cages io, ii, 12 and 13.
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Cages 10 and ii had been maintained at 25° C., so that t was taken
to be 09382 for them, and Cages 12 and 13 at i6° C., for which
t was taken to be o9878. The simulated curves were obtained using
the following viabilities:

Cages io and ii: a = o3; b = o; C = O95;
Cages 12 and i3: a = 0.7; b = 0; C = 0'7.

The viabilities at 25° C. correspond closely to those suggested by
Barker (0.4, o and 0.95), which were indeed used as a first
approximation.

In each of the four cages the simulated response curves agree
well with those obtained experimentally by Wallace, except that the
predicted frequency of XX individuals is consistently too high, whereas
that of XY individuals is too low. On the present model it is easy
to show that, whatever the viabilities, the expected frequency of XX
must be less than that of XY except when the Xr chromosome has
been eliminated, in which case the frequencies are equal. But in
practice the reverse is true: it seems as though the assumption that
normal individuals breed with a sex-ratio of one-half is false, and this
is borne out by Wallace's populations kept at 25° C., in which the
following numbers of male and female progeny were counted after
X,. had apparently been eliminated:

Cage ro: 64 males and 86 females;
Cage r i: 67 males and 83 females.

There is clearly no heterogeneity between the cages, and the combined
sex-ratio of i i :169 is significantly different from i : i at the 5 per
cent, level. Evidently a model which took this abnormal sex ratio
into account would fit the data even more closely than the present
one. Wallace did not comment on this sex-ratio, but Gershenson,
who is the only other writer on the subject to quote comparable sex-
ratios, found no deviation from I : i. It therefore seems likely that
this abnormality is confined to Wallace's experimental populations,
and is perhaps due to a factor such as overcrowding.

As can be seen from the figures, the simulated selection curves
approach fixation of the normal gene at both temperatures, so that
the apparent equilibria of Cages i 2 and 13 are probably fortuitous.

4. ESTIMATION OF VIABILITIES IN NATURAL
POPULATIONS

It is interesting to investigate what viabilities would give rise to
an equilibrium Xr chromosome frequency of p.

Working in terms of gene ratios at maturity,

a(i +2C1)—2
Tef

=
a(r +2Ct) —4bct

and rem = CTeI•
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Dobzhansky reported that there was no significant difference between
the male and female gene ratios in any sample from the natural
populations he studied, so that rem Tef and c = i. t may be taken
to be equal to i, whence

Tey: = Tef=PI(IP) = (3a—2)/(3a—-4b).

Supposing that the inviability effect of the Xr chromosome is additive,
(i—b) = 2(1—a), or 2a—b = i.
Hence a = (2p+2)/(2p+3)
and b = (2p+I)/(2p+3).
Table 4 gives some examples of values of p, a and b that satisfy these
relations. These viabilities lead to stable equilibria. Sturtevant and
Dobzhansky, and Dobzhansky, reported gene frequencies ranging from

TABLE 4

Equilibrium gene frequencies corresponding to various viabilities

Viabilities Gene frequency

a b c p

0'67
069
071
072
074

033
038
041
044
047

i
i
I
1
1

0 0
oi
02
03
04

zero to 30 per cent. in natural populations of Drosophila pseudoobscura,
and the suggested viabilities could account for these. Moreover,
small changes in the viabilities lead to relatively large changes in the
gene frequencies, so that both the wide range of apparent equilibria
and the changes in gene frequency with time are to be expected.

5. CRITICISM OF PREVIOUS WORK
It was mentioned in the introduction that previous treatments of

this subject have not been entirely satisfactory. The first attempt at
a model for the "sex-ratio" locus was made by Bennett. He put
forward a model appropriate to a sex-linked locus without gametic
selection, but then committed the error of applying this model to the
present case, in which gametic selection, or an equivalent phenomenon,
occurs. In effect he confounded gametic and zygotic selection, an
erroneous procedure in this case, as will be shown below.

Unfortunately it happens that his results are, on the surface,
reasonable, and some are indeed correct. For example, the character-
istic equation for the approach of the gene ratios at maturity to their
equilibrium values contains c and t, the two viabilities in question,
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always confounded as the product Ct, so that the rate of approach
near equilibrium, and the stability of the equilibrium, are correctly
given by Bennett's equations. Similarly, the equilibrium gene ratio
at maturity in females is correct, but that in males is wrong because
in the expression for it c occurs unaccompanied by t. As an example
of the erroneous results from Bennett's model, the equilibrium situation
at maturity using Wallace's maximum selective values at 25° C. is

TABLE 5
Equilibrium frequencies at maturity on the two models

Bennett Edwards

XX . . . . . 0149 0'172XX . . . . 0528 o•612
XrXr . • . . 0003 0003
XY . .
x1_Y . . .

Sex-ratio . .

.

.

.

.

.

.

0218
0102
0320

0172
0040
0212

Malegenefrequency
Female gene frequency
Overall gene frequency

.

.
.

.

.

.

0319
0393
0379

0190
0393
0369

given for the two models in table , it being presumed in both cases
that XY males produce no sons at all.

In the case of results given before zygotic selection, Bennett's
model leads to the correct gene ratios in males and females at each
generation, and hence at equilibrium, but since the sex-ratio of the
population is, on his model, then always one-half, the overall gene
ratio is incorrect. The genotype frequencies are also wrong.

TABLE 6

Equilibrium frequencies atfertilisation on the two models

Bennett Edwards

0246
0274
0075
0246
0159
0405
0393
0356
0.365

XX . . .
XXr . . .
XXX,. . . .
XY . . .
XrY . .
Sex-ratio . .
Male gene frequency
Female gene frequency
Overall gene frequency

.

.

.

.
•
.
.
.
.

.

.

.

.
•
.
.
.
.

0207
0231
0063
0304
0196
0500
0393
0356
o368

Table 6 gives a comparison similar to that in table 5, but with
frequencies before genotypic selection. In view of the inapplicability
of Bennett's model to the present problem it seems best to disregard
it in this connection.

Barker investigated the problem stochastically on an electronic
computer, and in his programme he made allowance for both gametic
and zygotic selection individually. He also ran a programme, for
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comparison, in which the two forms of selection were confounded,
as in Bennett's model, and concluded that in his work "the methods
of simulation of selection used are adequate and that specific or overall
[confounded] selective values may be used to study any given genetic
situation ". He was misled into making the latter part of this state-
ment by the fact that he happened to be working only in terms of
the gene frequencies in males and females before zygotic selection,
which, as has been stated above, are the same in both models. Had
he investigated the genotype frequencies, or the sex ratio, discrepancies
would have been apparent. So far as his own model goes, conclusions
drawn from it seem to be valid.

Shaw contributed a short article on the problem, in which he did
not appreciate Bennett's errors. He agreed with Bennett that the
equilibrium male gene frequency at maturity, using Wallace's maximum
viabilities at 250 C., was " about 30 per cent.", whereas the correct
value is 19 per cent. (see table 5). He also stated that " once the
equilibrium frequency of the "sex-ratio" males is known, that of the
other genotypes is fully determined ". This statement is only true
if one also knows the sex ratio.

Sprott (1957) set up a model for any number of alleles at a sex-
linked locus, and, working in terms of the male and female gene
frequencies, established the conditions for stable equilibrium. He
did not apply this model to any real situation. His stability conditions
are no more than a slight simplification of the determinantal equation
for the latent roots of the generation matrix, and are not given as simple
inequalities in the viabilities. He gave an example of a stable
equilibrium for two alleles in which the gene frequencies agree with
those calculated by the method given in the present paper. However,
he gave the corresponding female genotype frequencies incorrectly,
owing to the fact that he did not appreciate that he was working in
terms of the gene frequencies after selection, as is clear from his original
equations. The female genotype frequencies he quoted are those
before selection.

6. SUMMARY

In Drosophila pseudoobscura the X-linked condition "sex-ratio"
causes males carrying it to produce few or no sons, but nearly twice
as many daughters as are produced by normal males (Gershenson,
1928; Sturtevant and Dobzhansky, 1936). In the absence of differ-
ential viability one might expect it to increase in a population until
there were no males left, yet equilibria, with gene frequencies up to
30 per cent., have been found in natural populations (Sturtevant and
Dobzhansky, 1936; Dobzhansky, I 943). Wallace (1948) conducted
a series of experiments to determine the viabilities, and set up some
population cages to follow the progress of the gene. In these cages
the gene was either eliminated, or was at a very low frequency when
the experiment was ended. Bennett (1958) put forward a mathematical
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model for a sex-linked locus which he applied to Wallace's findings,
but examination of his model reveals an error which makes it in-
applicable to this situation: he confounded gametic and genotypic
viabilities, a course which invalidates some of his findings. The
present paper describes a more appropriate model, which has been
used to study the polymorphism. It is shown that Wallace's viabilities
fit neither the natural nor his experimental populations, and new
viabilities are suggested for each case.
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