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When selecting for a metric character in a population where the best
genotype conceivable is a homozygote, the theoretical limit to selective
advance will generally not be reached, owing to chance fixation of undesirable
alleles and to genetic homeostasis (inertia). The latter implies that other
characters such as viability and fertility are affected via linkage or pleiotropy,
or that the release of variability from residual blocks of closely linked plus
and minus genes is very slow. Operationally these chromosome segments
behave as single units in transmission, and if the plus genes are prepond-
erantly dominant, then the heterozygote (e.g. inversion heterozygote) is
heterotic in the direction of selection and acts towards conservation of
genetic variability. Both this kind of overdominance and some types of
non-allelic interaction have been invoked in explaining heterosis. With
these points in mind, the type of population to be considered here is one
in which certain heterozygotes are preferred to any homozygote arising
from the gene pool in other than negligible quantities.

For the sake of simplicity it will be assumed that (i) environmental
variation is absent, (2) after mass selection random mating is practised,
() random drift can be neglected, and () no selection forces are acting
but the one intentionally applied to the metric character, which implies
that suspension of selection will not result in change of gene frequencies.

With mass selection in the population defined above, the limit to selective
advance is at gene frequencies which maximize the population mean.
However, whether this maximum is actually attained depends—given the
same assumptions as above—on selection intensity, i.e. on the fraction of
the population permitted to reproduce itself. In fact, the plateau ultimately
reached is a direct function of selection intensity, and may diverge con-
siderably from the maximum attainable. It seems that little or no attention
has been paid to this type of artificially induced plateauing. The following
paragraphs present a detailed analysis of the phenomenon for one allelic
pair.

Let p be the relative frequency of the plus allele A, and let p+q = '.
Then on random mating the relative frequencies of AA, Aa, and aa, are
p2, 2pq and q2, respectively. The genotypic values can be denoted by
m+d, m+h and m — d, respectively. In our model It> d since Ac> AA > cc.
The population mean is ln+(2P— I)d+2p(I —p)h, which for h>d has its
maximum at Pm = (d+h) /Qh. Any change of p towards pm brings about
an increase of the mean. In passing it may be noted that the additive
variance, which is the part of the genotypic variance explained by regression
on gene dosage, is 4i(i —p)[d— (2p— x)h]2, which becomes zero at Pm'
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At the same time heritability in the narrow sense becomes zero, since its
numerator is the additive variance.

In breeding programmes and selection experiments, selection intensity
(v) is often more or less constant over successive cycles. If v> 2q,
the preferred Aa individuals are supplemented by AA, and if v >P2+2Pq,
even by aa individuals. Any change in p brings about a change in the
relative frequencies of the genotypes. It is therefore futile to describe response
to artificial selection by constant parameters for relative selective advantage.

Now it can be shown (Appendix I) that mass selection followed by
random mating among the selected individuals leads to a stable equilibrium
at p = v for or at p = for v(-. Therefore, if v is larger or smaller
than pa,, the ultimate plateau will fall short of the maximum population
mean. For example, Pm = o875 for h/d = , and the maximum will be
approached closer by relaxed selection (v = O75) than by intense selection
(v = o.25). At first sight it may seem even more paradoxical that the
disadvantage of intense selection is weakened by environmental variation,
which causes a discrepancy between the v best genotypes and the v best
phenotypes. Assuming, as before, absence of environmental variation,
it will be found (Appendix II) that for p <pm, maximum progress per cycle
is achieved with v = P2+2pq. This amounts to complete selection against
aa.

It would be interesting to explore other systems of selection. When
choosing for further breeding the progeny of parents individually selected
after random mating, the same equilibrium conditions as above will be
obtained (proof not given here). In judging the breeding value of a parent
on the basis of its offspring from random mating, it can easily be verified
that in the case of h> d the conclusion will be that AA is better than Aa,
and Aa is better than aa when P<Pm, and the reverse is the case when
p >p. This will lead to certain oscillation patterns of p, again dependent
on v.

Even when more elegant algebraic methods are found, this type of
problem requires a good deal of inductive reasoning. In models with
more loci an empirical approach by means of computors may become
necessary. Considering two unlinked loci, the relation AaBb is better than
AABB, and AABB is better than "other genotypes ", requires non-allelic
interaction and cannot be mimicked by overdominance. Here an equilibrium
exists at the diheterozygote frequency 2V(I —2v); see Appendix III. It is
tentatively suggested that starting from any distribution of genotypes the
following stable equilibria will be reached. All genotypes AABB for
v; all selected parents AaBb for v; and p = Pb = 2v for

In conclusion it may be argued that especially in populations at higher
breeding levels one should be prepared to meet the above-mentioned type
of induced plateauing, since certain loci and gene blocks connected with
heterozygote superiority resist fixation and thus represent an increasing
part of the total genotypic variation.

Appendix I
In selecting a fraction v of the best genotypes from a one locus population

after random mating, three relations can occur.
Relation i. v 2p0q0. This implies at least v , and leads to p1 =

and 2p1q1 = . Consequently p2 = , p3 = , etc.
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Relation 2. p20 +2p0q0 0> 2p0q0. Here q1 = p0q0/v, and p1 = (v—p0q0)/v.
From v> 2p0q0 follows q1 = p0q0/v< , and consequently p1> . Therefore,
in the following, one needs to consider only the case p > -. From p1 —p0 =
(v—p0)q0/v it is seen that v>p0 implies p>p, and that v<p0
implies p1<p0. Furthermore, p1>v>p0 has been excluded, since after
substituting v = p0 in (v—p0q0)/v>v, one obtains i —p0>, which
implies p0< . Finally, p0> v >p1 is impossible, as substitution of p0 =v+e
in (v —p0q0) /v < v leads to I —20> e. This means v < , and p1 < -, which
has been excluded. One can now distinguish three cases.

(a) v>p1>p0>forv>-andv>p0,
(b) p0>p1>v>forv>andv<p0,
(c) p0>p1>>v for v and v<p0.

The direct conclusion is that in the cases (a) and (b) p moves monotonically
in the direction of v, leading to a stable equilibrium at p = v. In case (c)
p moves monotonically towards , during which process one obtains v < 2pq,
where the stable equilibrium of" relation i " is reached. It is interesting
to note that if v = i —p0>-, thenp1 = ('—P0---p0+P20)/(' —p0) = v, which
is the equilibrium condition.

Relation 3. v>p20+2p0q0. Here p = (p20+p0qo)/o = p0/v. Therefore
p1 >p0, which for v > ultimately leads to "relation 2 ", and for v < to

relation 2 " or " relation i ".

Appendix II
Let p be the value of p maximizing the population mean, and let

P <Pm. Then maximum progress per selection cycle is obtained in " relation
3" (p1 p0/v) for the smallest v value, that is for v = P20+2P0q0, and in

relation 2 " (1 = i —p0q0/v) for the largest value of v, which is also
O p20+2p0q0. Finally, v < 2p0q0 implies p1 = , so for these values of v
maximum progress is not achieved, as p1 > for v> 2p0q0 (Appendix I).
With v for maximum progress one hasp1 = i —p0q0/v = i —p0q0/(p20+2p0q0)
=

Appendix II!
Let f, J, jj11, ... be the relative frequencies of the heterozygotes Aa,

AaBb, AaBbCc At equilibrium Pa = 0, 50 Jj 2pq = 20(2 —v). If
o takes out AaBb and AABB individuals only, it can be similarly calculated
for AaBb>AABB>" all other genotypes ", that an equilibrium exists at
Pa = Pb = 20, and Jj1 = 20(2 —20). Random mating equilibrium between
loci has not been assumed. In general, in the case of n unlinked loci, one
finds for AaBb...Z>-AABB...Z>" all other genotypes ", that p0 Pb

2n—10, andjj1...1 = 20(1 _21_1V).
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