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1. INTRODUCTION

THERE are as yet remarkably few cases, other than those involving
sex or other outbreeding mechanisms, in which the system maintaining
a balanced polymorphism is known. My intention in this paper is
to show that there is a balanced polymorphism in the colony of
Panaxia dominula at Cothill near Oxford, and to make a quantitative
examination of the forces that might be maintaining it. I will show
that a simple selective force favouring the heterozygote is not an
important force in this case, that some of the selective forces discovered
by P. M. Sheppard are probably important, and that there are possibly
other important selective forces yet to be discovered.

The colony of this day-flying moth near the villages of Cothill
and Dry Sandford in Berkshire has been studied every year by E. B.
Ford and his associates since 1939. There are three varieties in the
colony controlled by a pair of alleles: the common homozygous
wild-type dominula, the heterozygote medionigra, and the rare homo-
zygote bimacula. The rarer allele, occuring in medionigra and bimacula,
has always been referred to as the medionigra gene. This colony and
this segregating locus are very well suited for a study of polymorphism.
The colony is isolated from other colonies of the same species, so that
only a single population has to be considered. There are but two
alleles and all three genotypes can be recognised. The moth is an
annual, with a four stage life cycle of egg, larva, pupa and imago,
so that there is no overlapping of the same stage of different genera-
tions. These last two points make the theoretical analysis the simplest
possible. Furthermore, the moth can be bred in the laboratory and
new, artificial, colonies can be started.

The history of the colony has been described by Fisher and Ford
(i4.'), and Sheppard (1951, 1953, 1956). For the observations in
1956, and 1958, which are as yet unpublished but which I have
used in my calculations, I am very deeply indebted to Dr E. B. Ford,
F.R.S., Dr P. M. Sheppard and Mr L. M. Cook. The main results of
this extended study are given in figs. i and 2. The calculated frequency
of the medionigra gene (not the genotype) is shown plotted on a loga-
rithmic scale against years in fig. i. Fisher and Ford's value for the
gene frequency up to and including 1928 is plotted against 1928.
This value was obtained from studying museum collections, and
they argue that it is likely to be higher than the real frequency in
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the colony at that time. For the gene frequencies in 1939 and 1940
I have added the standard errors to the figure, because the sample
in 1940, 117 specimens, was much smaller than in any other year.
It can be seen that although the gene frequency in 1940 was apparently
greater than in 1939, it could well have been smaller. The gene
frequency declined from 1939 to 1947, since when it has shown no
consistent trend. The estimates for population size, obtained by the
method of mark, release and recapture, are shown, again on a
logarithmic scale, in fig. 2. The error of each figure, as given in the
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FIG. 1.—The estimated frequency of the inedionigra gene at Cothill at various times. For
1939 and 5940 the standard error of the estimate is shown.

papers quoted, is also shown. I will refer to the other two lines on
this figure towards the end of the paper (p. 150). From 1941, when
the first estimate was made, until 1958 there has been an irregular
increase in the size of the population, and the regression of population
size on years is positive (P<oo2).

As the gene frequency has decreased and the population size
increased since the early 1940's, it is worth asking whether there
is any simple relation between the two. This question has already
been asked, and answered in the negative, by Sheppard (1951). In
his fig. 2 he plotted the graphs of change in population size and of
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the apparent selective value of the medionigra genotype. Fig. 3 shows
the same graphs with their continuations into the 1950's. It is
immediately obvious that Sheppard's conclusion was right. There
is no simple relation between change in population size and change
in gene frequency. The two graphs are out of phase from 1942 to
1948 and in phase from igg to 0957. The graphs give the impression
that each tends, independently, to a two year cycle, and if this were
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Fm. o.—Upper graph : Estimates, and estimated error, of the population size of the
Cothill colony of Panaxia a'ominula.

Middle graph : The two population sizes in which one bimacala individual would
be expected if the gene frequencies had been at the apparent equilibrium points, for
the two periods indicated by the horizontal lines.

Lower graph : The geometrical mean population size XIho for the same two
periods.

so, it would explain the existence of an out-of-phase period and an
in-phase period. However, I have not been able to convince myself
that the graphs show more turning points, more maxima and minima,
than would be expected in a random series.

Three points are needed for the detection of a turning point.
The question is what is the probability, in a random series, that the
middle point of any set of three will be a turning point ? One can
argue that the second point has equal chances of being greater or
smaller than the first, and the third equal chances of being greater
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or smaller than the second.
a turning point is one half.
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Fin. 3.—Continuous line : Apparent selective value of the medionigra genotype.
Dashed line: Change in the population size.

have too many turning points, that of apparent selective value having
a probability of less than i per cent, of being a random series, that
of change of population size a probability of less than 5 per cent.
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On the other hand one can argue that taking three different numbers
in all their six possible arrangements, four of these have turning
points, so that the expected frequency of turning points in a random
series is two-thirds (Cole, is). If this is accepted, both the graphs
in fig. 3 could be random series. A more refined test for non-random-
ness is to calculate the first serial correlation coefficients. Neither
of these is significant, though that for apparent selection, r1 = —o'41
with 15 degrees of freedom, has a probability of less than 10 per cent.
So while these series may be oscillating series, it is not yet possible
to prove this.

2. SOME POINTS OF THEORY

The analysis of the changes in gene frequency will be more easily
followed if some points in the theory of polymorphism are considered
first. Even the simplest polymorphism, involving only two alleles
at one locus in a population with discrete generations, can be main-
tained in a great variety of ways. I have listed (Williamson, 1958)
the systems which are known to be capable of producing polymorph-
isms: here I will give a reduced, and rather different, classification
of those which can act in the simplest polymorphism, such as that
found in Panaxia. These systems can be grouped into four categories,
the first two involving but a single selective force, the last two needing
more than one force.

In category one there is a single, constant, selective force, and
for this to produce a balanced polymorphism it must favour the
heterozygote. It is perhaps worth pointing out that the definition
of a constant selective force is arbitrary, and one could define it in
such a way that the conventionally accepted constant value was
a variable value. In a polymorphism maintained by selection for
the heterozygote, there will be more heterozygotes in the population
than would be expected from the Hardy-Weinberg ratios; bu1 the
converse is not true. In a simple sex dimorphism with 50 per cent.
males and 50 per cent, females, the frequency of the Y chromosome
is 25 per cent., so the expected frequency under random mating of
XY heterozygotes is 37 per cent., against the 50 per cent, observed.
To show an excess of heterozygotes in a population shows neither that
there is a balanced polymorphism nor, if there is one, how it is main-
tained. Conversely, in many cases the excess expected is small, so
small that it might not be possible to demonstrate it in some natural
population.

Category two includes balanced polymorphisms maintained by a
single variable selective force. Examples are non-random mating,
including sex, and cases where selection is a function of gene frequency,
or gene number, or a function varying in space or time. Members
of this category come under the heading B of Williamson (1958).

Members of category three can be called secondary polymorphisms.
In them selective forces produce a polymorphism only because some other
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selective force has already produced another balanced polymorphism.
This category includes cases depending on sex dimorphism, linkage
and sex-linkage; they come under the heading A3 in Williamson (1958).

Category four is in my opinion the only category to which the
expression " balance of selective forces " is appropriate, and it includes
all those cases in which two or more biologically distinct selective
forces interact to give a balanced polymorphism. An example is the
polymorphism of the t locus in mice (Dunn, As will be seen,
the polymorphism of Panaxia dominula probably falls here.
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Fin. 4.—Curves of change in gene frequency (sq) against gene frequency (q) for three
balanced polymorphisms. The equations of the curves are

P : = (2q—9q'+7q')/(I8+4q-—7q')
Q: iq = (q—4q2+3q°)/(18—3q')
R LIq = q—5q'-1-6q'—2q5

Note the difference in the scales along the iq and q axes.

Consider the change of gene frequency to be expected in a poly-
morphic population, of any of the categories listed above, when the
gene frequency is not the equilibrium frequency. As a population
with discrete generations has been postulated, the changes in gene
frequency will also be discrete, and the frequencies can be arranged
in a chain, q1, q2, q3 .... Unless the selective force is of a special type,
the change from q1+1 to q+2 will be independent of q, and, in general,
given q6+1, q6+2 will not be determined exactly but will have a probability
distribution. In other words, the chain of q's will be a stochastic
Markov process. If the selective forces involved and the initial gene
frequency, q1, were known, one might still find a significantly bad
fit between the theoretical and observed curves starting at q1, if for
instance, the first step from q1 to q2 happened to be a rather improbable
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one. An analysis of a polymorphism by examining the curve of gene
frequency against time can be misleading. A better method of analysis
is to examine the change in gene frequency, against gene frequency
q1, where Lq = q+1—q. The probability distribution of LXq depends
on q and not on q1+1, and so the correct plot is of Lq against q1.

The theoretical curves for L\q against q for three balanced poly-
morphisms are shown in fig. 4. Each system has selective forces of
roughly the same intensity, and each has approximately the same
equilibrium point. Near the equilibrium point, the curves are
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Fso. 5.—The observed values of gene frequency plotted against the changes from those
values. U 8939 and '94°, A 1941-1945, • 1946-1957. Line A is the regression of
change of gene frequency on gene frequency for 1941-1957. Lines B and C are the
changes expected for Sheppard's values for non-random mating and fertility and his
value for larval mortality, respectively. Lines D and E are the lines needed to produce,
in conjunction respectively with C and B, line A.

approximately straight, and, as Lewontin (1958) points out, all
necessarily have a negative slope. Curve P is a polymorphism of
category one, Qof category three and R of category two. R involves
non-random mating, and its slope is much greater than those of the
other two curves. If the slope of a curve near the equilibrium point
is greater than minus one, the gene frequency will oscillate around
the equilibrium point. In Panaxia there is a possibility of such an
oscillation, and so the possibility of such a steep curve.

3. THE CHANGES OF GENE FREQUENCY AT COTHILL
From the values used in fig. i it is easy to construct fig. 5, which

shows iq plotted against q, and some calculated curves which will
be explained in due course. Three symbols have been used for the
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points; the two squares on the right refer to the gene frequencies of
1939 and 1940, the triangles in the middle to years iqx-zi, and
the circles to 1946-57. The general scatter of the points suggests a
balanced polymorphism, z\q being positive for very small q and
negative for larger values. As was pointed out in the introduction,
the gene frequency was determined less exactly in i 940 than in the
other years, so that the two square points in fig. 5 are unreliable,
and have not been used in the calculations. The use of extreme values
that are not reliable could easily lead to misleading results, though
in this case it can be seen that they would not have an overwhelming
effect. The correlation of iXq with q using all nineteen points is
—o489(p<oo5); with seventeen points, eliminating the two square
ones, it is —o572 (p<oo2). These values show, at least to the extent
to which they are significant, that there are non-random forces acting.
As the population is a closed one, this means that there are appreciable
selective forces and that there is a balanced polymorphism. There
is a suggestion in fig. 5 that the equilibrium gene frequency was higher,
about 55 per cent., in 1941-45 than in the years since. I will return
to this point, but for the time being I will treat the years 1941-58
as a homogeneous set.

Before trying to fit any theoretical curves to fig. 5, it is convenient
to calculate a line from the points. Both q and Lq are subject to
error and Moran (x 956) has pointed out that in such a case, using
only second degree statistics, any line between the regression of q
on zq and the regression of Lq on q can be fitted to the data. The
shallowest of these is the regression of Zq on q, and this is a fairly
satisfactory line in that it assumes that the estimate of q is free from
error and that all the error is in q, and zq, being based on pairs of
q values, will in fact be more subject to error than q. This regression
line is shown on fig. 5 and is labelled A. Its slope is —o496, or very
nearly minus one-half. This is the shallowest line that can reasonably
be fitted to the points; as will be seen, it is quite hard to find a
theoretical curve to match this. Another obviously possible and
rather steeper line is the reduced major axis (Kermack and Haldane,
195°). The slope of this is —o868. This is still less than minus one,.
so again it seems unlikely that the selective system leads to an oscilla-
tion, even a damped oscillation, around the equilibrium gene frequency.
For the moment, I will only attempt to match line A, and not any
steeper one.

Three conclusions, all rather negative, can be drawn from the
position and slope of line A. The first is that the equilibrium gene
frequency, which is now at least 3.5 per cent. of the allele for medionigra,
is greater than the frequency observed up to 1928. That frequency
was I 2 per cent, with fiducial limits of 2 '6 per cent, and 3 '2 per cent.
at the 5 per cent, and i per cent, significance levels. Dr H. B. D.
Kettlewell tells me that medionigra taken up to 1928 were not as easily
distinguished from the wild-type dominula as modern medionigra. It
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is in any case evident from fig. i that some very remarkable event
took place at Cothill between 1928 and 1939. The second conclusion
is that selection against the rare homozygote bimacula can be ignored.
The equilibrium gene frequency q is so low that eliminating all
bimacula, which would have a frequency of about q2, would affect q
to an extent that is negligible compared with the effect indicated by
line A.

The third conclusion is that selection favouring the heterozygote
is not the principal cause of the polymorphism; the polymorphism
does not belong to category one. Suppose that the polymorphism is
of category one, and that the selective values of dominula, medionigra
and bimacula are i —s, i and i —t, and that the equilibrium gene
frequency is o'o35. Then t will be greater than s, but for any value
of t a value of s can be found that will give an equilibrium of o'o35.
However, t cannot exceed one, and with that value the curve of LIq
against q will be as steep as can be achieved with this system of main-
taining a polymorphism. It is well known that in this system the
equilibrium frequency 4 = s/(s+t), and with 4 = o'035, t = I we
get s = oo36. It can be shown that, at 4, dAq/dq = —st/(s—--st+t)
and in this case this gives a slope of —s or —o'o36 for the slope at 4
of the curve relating LIq to q. This is less than one-tenth of the slope
of line A, and it is evident that the change in gene frequency under
a polymorphism of category one would be much too slow to account
for the changes observed in the population of Panaxia dominula at
Cothill.

Having eliminated some possibilities, one can now examine the
selective forces found by Sheppard (1952, 1953), and see if they are
sufficient to account for the polymorphism. He found four types of
selection. The first was that bimacula had the marks of birds' beaks
on its wings much more frequently than either medionigra or dominula.
Considering the known lethargy and comparative lack of protective
colouring of bimacula this observation probably, though not necessarily,
means bird predation is a selective force acting against bimacula. I
have already shown that such a selective force can be ignored.

Sheppard started an artificial colony with backcross broods of
medionigra xdominula, and recovered thirty pup of which twenty-one
were dominula. This suggests that the survival of eggs and larvae of
medionigra is only about 50 per cent, of the survival of dominula,
and if this is really so it would lead to the change of gene frequency
indicated by the line C in fig. 5. Nothing is known of the possible
selection on the young stages of bimacula, so not much reliance could
be placed on the line C even if it were based on more extensive experi-
ments with dominula and medionigra. Nevertheless, some strong selection
approximating to that indicated by C will be needed to produce the
steep downward slope of A.

The third and fourth types of selection found by Sheppard relate
to the mating and fertility of imagoes. His experiments showed that
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medionigra males are less fertile than dominula and possibly also than
bimacula males. He also showed that dominula prefers to mate with
medionigra rather than dominula, though medionigra when given a choice
of medionigra and dominula showed no preference. In experiments
with medionigra and bimacula each showed a strong preference for the
other. Haldane (1954) found no evidence for mating preference in
the wild, but his test was based on the assumption that there were
no other selective forces. As these exist and seem to be strong, his
test is not valid, and there is no reason for not using Sheppard's results.

It is convenient to combine both their last two sorts of selection
in a matrix of the form I have developed (Williamson, '959), but
before this can be done it is necessary to decide on numerical values
for the forces. A variety of figures could be taken from Sheppard's
results, so I have chosen round numbers close to his mean values.
I have though it best to ignore the results with bimacula, as it would
be necessary to invent a figure for its like or dislike of dominula as a
mate and as it seems rather inconsistent that male medionigra should
be less fertile than male bimacula. Leaving bimacula out of the equations
avoids the necessity of coming to a decision on these points, and by
restricting attention to gene frequencies near the equilibrium point,
one can expect that ignoring bimacula will not lead to gross errors.
For the other values, I have assumed that dominula prefers medionigra
to dominula in the ratio of two to one, and that the fertility of medionigra
is 75 per cent. of that of dominula.

The random mating matrix in Williamson (i) has the form
d+h (d+k) o d

r+Iz (d+2h+r) d+h 2k

o (r+h) r+h r
where d, 2h and r are the frequencies of one homozygote, the hetero-
zygote and the other homozygote, and d+2k+r = i. Adapting this
to the non-random mating and infertility of Panaxia gives

3(d+h) d
d+4h 2

2h , (d+h) hd+4h4 2 2

0

with d+ 2k = 1. Manipulation of the matrix, and noting that in
this case h = q, gives the following formula for the change in gene
frequency

3q—16q'-+-2oq3
8+12q—8q2
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The graph of this equation is shown in fig. 5 and is labelled B. It is
likely that the curve B should, if anything, be higher; that is, the
value for q for any q should be greater than that indicated. This
is because Sheppard's experiments suggest that bimacula is both more
fertile and has a greater effect on mating preference than medionigra,
and both these effects would move B higher.

For two selective forces to produce a polymorphism of category
four, the curves of their equations for q against q must be of different
shapes so that their resultants resemble the curves of fig. 4. Curves
of the types of B and C in fig. 5 are one of the possible pairs of types
to do this. B rises more sharply at first and then flattens out, C falls
steadily, so that it would be possible at low q that B would be greater
than C, so that the resultant Lq was positive, and that at higher values
of q C would be greater than B, and so q would be negative. Un-
fortunately B rises too slowly, or alternatively C falls too fast, for
them to produce an equilibrium; the resultant zq is negative for
all q. The curves which would complement B and C to produce A
in the region of the equilibrium frequency are also shown in fig. .
They are labelled E and D respectively. That D runs at such a high
value of zq and E is so close to A are consequences of the order of
events in the Panaxia life cycle. This order is: gene frequency
observed, selection types three and four (mating preference and
fertility, curve B), selection type two (juvenile mortality, line C),
next observation of gene frequency. As selection types three and
four increase the gene frequency, selection type two acts on a higher
gene frequency than they do. The inverse of line B will necessarily
be closer to the abscissa than is B.

Sheppard has found selective forces of the right type to produce
a polymorphism of category four. The values he has found for the
strength of these forces would not in fact produce a polymorphism,
but as his values are subject to large experimental errors this is not
particularly disturbing. If, on the other hand, his values are well
determined, some other selective force, as yet unknown, is needed to
produce the observed balanced polymorphism.

It might be as well to leave this study at that point, but there is
still one topic that should be discussed, as it requires investigation.
That is the question of whether or not there have been, since 1941,
two points of equilibrium, and two curves of z\q against q, one fitting
the triangles of fig. 5 (i94i-45) and one the circles (1946-57). As
this possibility is suggested by fig. 5 it cannot be tested by the values
plotted there. If these two curves have existed, each would be much
steeper than curve A, and each would possibly represent an oscillating
system. It is quite possible that such a system exists in Panaxia. For
the two periods involved one can calculate the geometric mean
population size, and also that population size which would have an
expectation of producing exactly one bimacula at the apparent
equilibrium gene frequency for the period. These two pairs of values
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have been calculated and plotted on fig. 2, the geometric means
being plotted at one-tenth of their values to avoid confusion with
the main curve. The resemblance of the two slopes is interesting:
I think it not wise to speculate on any possible meaning of this
resemblance. I would just suggest that more mating preference
experiments should be done with bimacula, possibly using more than
three moths at a time.

The colony of Panaxia dominula at Cothill has probably been studied
for longer, and more intensively, than any other population of any
organism, yet more experiments will be needed before the genetical
system of the population is understood. I hope that this paper will
be found useful both in showing the present state of knowledge
and in indicating what further experiments might be tried.

4. SUMMARY

i. The intention of the paper is to show that there is a balanced
polymorphism in the Cothill population of Panaxia dominula, and to
make a quantitative examination of the forces that might be main-
taining it.

2. Graphs are given showing the gene frequency up to 1958 and
the population size up to

3. The possibility that both the apparent selection against the
medionigra genotype and the change in population size oscillate with
a period of two years is examined.

4. The mechanisms that can maintain a balanced polymorphism
with two alleles in a population with discrete generations are classified
into four categories.

5. Reasons are given for examining such polymorphisms with the
use of a plot of the change in gene frequency Lq against gene
frequency q..

6. The curve of zXq against q for the Cothill data has a slope of
about — or steeper, and the equilibrium gene frequency is at about
3 per cent.

7. No polymorphism maintained by selection for the heterozygote
could give such a steep curve at so low an equilibrium point.

8. The interaction of the selective forces found by Sheppard could
give such a curve, though his estimates do not in fact give a curve
fitting the observed curve.

g. The possibilities that there has been more than one equilibrium
point, that the polymorphic system is an oscillating one, and that
there is some relation between these and both population size and
the occurrence of a few bimacula in the population are briefly mentioned.
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