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1. INTRODUCTION

AN investigation of several inbreeding systems when homozygotes
are at a selective disadvantage compared with heterozygotes was
conducted by Hayman and Mather Hayman (is) also
considered the system of mixed selfing and random mating which occurs
with plants which have imperfect selfing mechanisms. The present
investigation is of a further mixed system, that of sib and random
mating. Since sib mating is the most intensive inbreeding system
possible with animals we are performing for animals what Hayman
(i) did for plants.

A further important mixed system is that of parent-offspring and
random mating which corresponds fairly closely to the backcrossing
system practised in cattle breeding. This would be even more difficult
mathematically than the present investigation but Hayman and
Mather (x93, figs. 3 and 4) showed that pure parent-offspring mating
achieved a similar level of inbreeding to pure sib mating whatever the
selective disadvantage of the homozygotes. We may, therefore,
expect our present conclusions to be equally valid for mixed parent-
offspring and random mating.

We also compare the relative inbreeding effectiveness of selfing
and sib mating when some random mating is permitted. In the
situation discussed by Hayman and Mather (1953) we can make this
comparison with the relative survival rates of homozygotes that
produce equal levels of heterozygosity under the two mating systems
and we find that selfing is about 6o per cent, more effective as an
inbreeding system than sib mating for homozygote survival rates down
to 20 per cent., but that as the survival rate is lowered further this
difference in inbreeding effectiveness gradually disappears. We will
see that with a proportion of random mating the relative inbreeding
effectiveness of selfing and sib mating is considerably altered.

2. GENERAL EQUATIONS

One gene with two alleles, a and b, is considered, the population
being assumed large enough for random variations in frequency to be
neglected. The population can be classified into sixdistinct mating types
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appropriate to sib mating. Let the relative frequencies of the types
aaXaa, bbxbb, aaxbb, abxab, aaxab, and bbxab be , t, c', /3, y,
respectively, (A+i+x+/3+y+ = i), and let x,, i be the relative
viabilities of the genotypes aa, bb and ab.

Starting from a population (, i, , /3o, yo, ) the genotypic
array in the next generation is

10x aa+m9y bb+n0 ab
where

1 = Ao++Po+fro m0 = 0 = o+Po+Yo+o
and hence 10+m0+n0 =

If l0x+m0y+n = k0 then the frequencies of the genotypes aa, bb,
ab in the next generation arep1, q,, r1 respectively (p+q+r = i) where

k0p, = 10x k0q, = m0y k0r1 = n0.

Hence the genotypic array may be written

k0(p1aa+q,bb+r1ab).

Thus for random mating with selection the proportions of the
mating types in the next generation are

l-2(in2 2 j, 2 i,
0 , q, , 21q1, T1 , 2q1T1

For sib mating the changes in frequency between the generations
are specified by the generation matrix A (Hayman and Mather, 1953,
section 4.2). A is the matrix.

Offspring
Parents

aaxaa bbxbb aabb abxab aaxab bbxab

aaXaa .
bbxbb .
aaxbb .
abxab . .
aaXab .
bbxab .

x . . x2
. y . .

xy
. i

x x
y . y

Column divisors . I I I X-j--y+2 X I I I

Thus 2, a A20 where 2 is the 6 xi column vector of the mating
type frequencies.

Since each column of the generation matrix sums to the proportion
of offspring from the corresponding mating type, the constant of
proportionality is I/k0(p1+q,+T,) = i/k0.



MIXED SIB AND RANDOM MATING 189

Let s and t (s+t = i) be the frequencies of sib and random mating
respectively in the mixed system. The equations governing the
frequencies in the next generation are now

/ 2 x2 '
k0(s+/c0t)A1 = s(xAo+

X
f3 + voi +t/c02p12\ 4(X-+-y+2) 2(X+I) /

k0(s+k0t)1 =
6o)

+t/c02q12
4(x-+-y+2) 2(y+I)

k0(s+k0t)c1 = S P0 +2tk02p1q1
2(x+y-1-2)

(i)
k0(s+k0t)P1 = I

Po+ yo+
'

8o) +tk02t12x+y+2 2(x+I) 2(y+I)

/c0(s+k0t)yi = x
flo+._-_vo) +2tk02r1.p1X+J+2 X--I

= )'
po+_!_-o) +2tk02q1r1X+y+2 )'+'

3. EQUILIBRIUM

The population is in equilibrium if 2 = 2. Let the equilibrium
population 2, be (A, ; y, 8) with genotypic frequencies (p, q, r),
the two frequency distributions being related by the equations

p=A++fr q=±±6 r=/3+y+S
(which also hold in each generation for any population). Hence,

(A—p+(y—6) = i—rn where, as before, I =
m = n = cc+fi+y+8.

Since the population is in equilibrium kp = ix and kq = my;k = lx+rny+n. Also i+m+n =

Eliminating 1, m, n from these equations gives

y(k—x)p—x(k---y)q == o
kyp+kxq+kxyr = xy (ii)

p+q+r = I
Therefore

p q r
x(x —k)(k—y) y(i —k)(/c—-x) 2(/c—x)(k---y)

I

k[(k—x) (r —y) + (k—y) (x —x)] (iii)

Substituting these results in equations (i) gives six linear equations
in (A, , ; /3, y, 8), their solution being functions of k. Then using the
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equation A++c+/3+y+6 i an equation is obtained for Ic in
terms of the parameters x,j, s and t. Thus Ic is known and hence so is
the equilibrium distribution. The elimination of %, t, , /3, y, is
easily performed by matrix methods. Together with A++o+/3+y+

i, equations (i) for equilibrium may be written

k(sH-tk)(2\\ =(sA k2tz"\

'2

i) k(s+tk)u o A
ork(s+tk)(2\\ =B(2"\ (iv)

I)
with u = (i, i, i, i, i, i) and z = 1P2 ] p = p(k)

q=q(k)
2q r r(Ic)
r2

HP
L qr J

The equation determining k may be written
B—k(s+tlc) I = o.

I is the 7 X 7 identity matrix. When t = o, the equation reduces to
I A—Id I = o, the usual characteristic equation for pure sib mating
(Hayman and Mather, 4.2).

With the appropriate value of I, solving the equations (iv) yields
the equilibrium frequencies 2.

The expansion of the determinant is

(k—x)(k---j)f(Ic, x,.y, s) = 0,

f(Ic, x, y, s) being an eighth degree polynomial in I.
If I = x, 2= (i, o, o, o, o, o) and the genotype distribution is

(i, o, o). Thus the population becomes homozygous aa. Similarly
I =y corresponds to a homozygous bb population. The roots of
f (I, x, y, s) = o give rise to populations 2 containing both hetero-
zygotes and homozygotes, only one of which, however, is a real popu-
lation.

2 defines a real, stable population equilibrium if it corresponds
to the maximum root of the determinantal equation. The maximum
root of f (I, x, y, s) = o lies between the least of x and y, and unity
and defines a real population with genotypic frequencies given by
equations (iii). This is the stable equilibrium only if k >x,y; other-
wise one of the homozygous states is the stable solution.

Fig. i shows the type of equilibrium population for various values
of x, y and s. The areas marked A and B correspond to the homo-
zygous states aa and bb respectively; in C the population, though
containing heterozygotes, has more homozygotes than a population
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mating purely at random without selection; in D it contains more
heterozygotes; on the boundary between C and D the effects of
inbreeding and selection exactly counter each other.

Sr 1.0

y

y

S= .75

Fic. i.—Phase diagram showing types of equilibrium with various proportions of sib
mating (s) and random mating (t = i —s). x = survival rate of one homozygote
(aa) relative to that of the heterozygote (ab). .y = relative survival rate of the other
homozygote (bb).

When the point (x, y) is in A, the population becomes homozygous aa, in B, homo-
zygous bb. In C, the population becomes less heterozygous than a population mating
at random without selection, and in D, more heterozygous.

The inner boundaries of A and B are where two of the three values
of k determining the types of equilibrium coincide. Thus their equa-
tions are

f (x, x, y, s) = o and f (y, x, y, s) = o.

On the boundary between C and D Hardy's law holds, i.e. 4q r2.
Thus using this equation with equations (iii), the boundary is

f(X+Y_2X),
=

I-x-y

x x

S = .50

x
0 .2 .4 6 6 10 0 2 4 6 -6 1-0

x
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Unless one allele is initially absent, the equilibrium frequencies
are independent of the initial state, being determined by x,y and s
only.

4. EQUAL VIABILITIES

When X =y some simplification in the equilibrium
is obtained. The first of equations (ii) now becomes

distribution

If k = x the equilibrium is homozygous with respect to aa or bb,
and these two distributions are unstable, attained only if the initial
population has one allele missing. Thus p = q and hence A =
and I' = 6. Thus in equilibrium the gene frequencies are equal and

i —-kp=q=
2k(I —x)

k —xr = _________

k(i—x)
(v)

1.0

(k—x)(p—q) = o.

7

r 5
.4

.3

2

1

0 .1 .2 .3 .4 .5
x

.6 .7 .8 .9 1.0

Fso. f2.—Equilibrium with equal viahilities of the homozygotes. r = proportion of hetero-
zygotes in the population. x survival rate of both homozygotel relative to the
heterozygote. s = proportion of sib mating.
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The mating type pairs aa x aa, bb x bb; and aa x ab, bb >< ab may
be grouped together, and the matrix B is

aaxaa aabb abab aaab tk'z

aaXaa . . sx . sx2 sx2 2t/c'p'
4(X+1) 2(x+I)

aa><bb
21k2/J'

4(X+I)

s s s tk2r'abxab
2(X+I) 2(x+I)

aaxab sx 4tk'rp
x+i x+1

k(s+kt) . k(s+kt) k(s+kt) k(s+kt) k(s+kt)

The determinantal equation for k is

4t2(I+X)'k6+2t(I+X)2{4s—(I+x)t}k5+2S{2(I+x)S—(2+6x+3x2)t}/c4

+s(i +x) {—2(I +4x+2x2)s+x(2+3x)t}k3+x(i +x) (2+3x)s2k2

+sx3{(2+x)s+(I+x)t}Ic —s2x4 = o (vi)

This equation is also obtained by letting x =y in the general
equation f (k, x, y, s) = o. The maximum root lies between x and
(x +x), and with this value the genotype frequencies are

((' —r), (, —r), r) with r (/c—x)/Ic(i —x).

Graphs of r against x for various s are shown in fig. 2.

5. COMPARISON WITH SELFING

Selfing is the more powerful inbreeding system and a higher
proportion of random mating is needed to obtain a given frequency
of heterozygotes than in a mixed sib and random mating scheme
with the same value, x for the viability of the homozygotes. Fig. 3 is
a graph of s,, the proportion of selfing, against s2, the proportion of sib
mating which gives the same frequency r of heterozygotes in the equi-
librium population, for different values of x. Hayman (iç) gives the
equation determining r under mixed selfing and random mating, with
equal homozygote viabilities as rx(I +s1—s,r) = (i —r)(x —s1+s,r).

Eliminating r and k between this and equations (v) and (vi) gives
the relationship between s,, s2 and x.

The ratio (s, —s,) Is2 gives a measure of the relative inbreeding
effectiveness of the two systems and this in turn can be measured by
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Fin. 3.—Comparison of a mixed sib and random mating system with a mixed selling and
random mating system. s5 = proportion of selling. s5 =proportion of sib mating
required to produce the same equilibrium distribution as the mixed selfing system.
x = relative survival rate of both homozygotes in either mating system.

Along the broken line, s5 = s5. The deviation of the (sj, s,) curve from this line
is a measure of the difference between the inbreeding effectivenesses of the two systems.
For small x the curve approximates to a straight line whose gradient measures the
effectiveness of the mixed sib mating system relative to that of the mixed selling system.

For x>o-763 the curves meet the line s = s, at the point (s, s). All other curves
deviate entirely from this line.

for2o per cent, survival and is almost ioo per cent. more effective for
less than i o per cent. survival of the homozygotes.

5. NO SELECTION OPERATING

The method used above breaks down when x =y i, but in this
case the approach to equilibrium can be described. The equations
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the closeness of the (s1, s2) curve to the dotted line s1 = s2. For low
homozygote survival rates the curve closely approximates to a straight
line whose gradient, s,/s, is constant. For 50 per cent, survival,
selfing appears to be about o per cent, more effective; for 30 per cent.
survival the figure is 8o per cent.; selfing is 90 per cent. more effective
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linking the mating type frequencies between the nth and (n+ r)th
generations are

= s(A+6+y) +tp+1
= +tq+1
— (1Q\ _L FJ;H-1 — -I-2Ffl+lqfl±1
=
— '' 1 tr hY+i nTYn) -r n±1J'nf-l
— (1Q i1\ In+i — -r2 q÷1r1

where
h _AJ_IRJ_1J/n+1 n I 41'n I 2Yn

q+1 =
= n+jfln+i1'n+n

and are the genotype frequencies in the (n+ i)th generation.
From these equations it follows that

4P+22SP+1SP = u(s+4tu)

4q+2—2sq+1—-sq = v(s+4tv) (vii)

4T+22ST+iST = 8tuv

where u and v are the (constant) frequencies of the genes a and b
(assuming no mutation). Solving these difference equations gives
the distribution at any generation in terms of the initial distribution.

= A1 1+B1e2+u(s+4tu)/(x+3t) —-u2+uvs/(I+3t)
= A2e111+B2E2n+v(s+4tu)/(I+3t) —-v2+uvs/(I+3t)

Tn = A3c1+B3 -2+tuv/(i +3t) —>2uv—2uvs/(I +3t).

The constants A, B are determined by the initial mating type
frequencies. E1 and c2 are the roots of

4Z2—2s—s = o (viii)

and hence <i for s <i.
The form of the limiting or equilibrium frequencies indicates

the departure from the random mating population (u2, v2, 2uv). The
equilibrium distribution is dependent only on the initial gene fre-
quencies.

For a given value of s the equilibrium point, as represented in a
trilinear diagram based on an equilateral reference triangle, lies
on the parabola 2isr = t(4pq—r2). Approach to this equilibrium
parabola is along a straight line perpendicular to the base of the
reference triangle from the initial point. The distance from the
equilibrium decreases geometrically each generation.
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This approach to equilibrium is very similar to that of mixed
selfing and random mating with no selection (Hayman, 1953). We
may also expect the approach under selection to be qualitatively
similar for the genotypes in the two cases and so the general remarks
by Hayman 4.2) should also apply here.

The mating types follow a much more complicated approach to
equilibrium than the genotypes, being determined by a seventh order
linear difference equation compared with the second order equation
(vii) for the genotypes. Its characteristic equation contains equation
(viii) as a factor. The equilibrium frequencies depend only on the
gene frequencies u and v.

7. SUMMARY

The equilibrium is investigated of a large population under a system
of mixed sib and random mating with selection against the homo-
zygotes. Diagrams are produced giving the types of equilibrium and
comparing this system with a system of mixed selfing and random
mating.

Aclcnowledgment.—Thanks are due to Miss B. Stevenson of this Department for
computing the graphs.
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