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1. INTRODUCTION
A MULTIPLE allelic system at a locus can give rise to genotypes of
different viabilities. Under certain conditions the genes comprising
such a system can exist in equilibrium in a large random mating
population, giving rise to the situation known as a (balanced) poiy-
morphism. Owen 1954), in discussing the problem for three
alleles, has stated a set of necessary and sufficient conditions for such an
equilibrium to be stable with respect to small variations of the gene
frequencies about their equilibrium values. The object of this paper
is to present formal proofs of these conditions for the general case of
n alleles, and to investigate, in some detail, the three-allele situation.
In order to do this the question of the change in mean viability of the
population is studied in the manner indicated by Mandel and Hughes
(1958).

The situation to be investigated is that in which there are discrete,
non-overlapping generations. Kimura (1956) and Penrose et at.
(1956) have studied the problem, introducing a continuous time
parameter, and replacing recurrence relations by differential equations.
This procedure assumes that the change in the state of the population
from one generation to the next is continuous, and is justified only in
the case of infinitesimally slow selection. The analysis to be given
here is free from any such restriction.

2. CONDITIONS FOR A NON-TRIVIAL EQUILIBRIUM
In general, consider n alleles A1, A2, ..., A,, at a single locus, in a

large population mating at random. Let denote the relative
viability of the genotype AA3 (i, J i, 2, ..., n) ; the thus form a
symmetric matrix (a) and we write

= det (a13). (,)
Letp, (i =r , 2, ..., n) denote the frequency of gene A1 (i = I, 2, ..., n)

in the population in any one generation, so that the pdescribe the state
of the population and

2p1= I, op1i. (2)
Let

T
V=Xa13p1p. ()
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V is thus a function of the gene frequencies, and will be called the
mean viability of the population. If the population in state p. under-
goes random mating, the frequencies p. in the following generation
will be given by the relations

Vp =p1Eap (all i = i, 2, ..., n). ()

The population is in equilibrium if, for all i, p =p. This can
happen in a variety of ways in which one or more of the p. vanish.
The non-trivial equilibrium, in which none of the p is zero, is defined
(if it exists) by the relations

Ea1p = J7, for all i = i, 2, ..., n. ()

Let P. (i = i, 2, ..., n) denote the values of the p satisfying this set
of inhomogeneous equations, and Ve the corresponding value of V,
then

= (6)
E EA,

where denotes the cofactor of aj in L, and writing

D =Z. A1. (7)

Also
L.

Ve=jj (8)

and setting
A =L'A, all i = i, 2, ..., n

(6) becomes
A.

Pj=, allz=I,2,...,fl
(i o)

VeAior P = —i—,
all z = i, 2, ..., fl.

In order that an equilibrium may exist, it is necessary that the P
all be positive; this means that the A1 must all have the same sign,
and this will also be the sign of D and of .. If this condition does not
hold, no non-trivial equilibrium is possible. Moreover, it follows
from () that there can be at most one non-trivial state of equilibrium.
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3. THE CHANGE IN MEAN VIABILITY IN SUCCESSIVE
GENERATIONS

In this section the variation of V, the mean viability, from one
generation to the next will be examined when the population is in the
neighbourhood of an (existent) equilibrium state; it will be shown
that the value of V increases each time the population undergoes
random mating.

Suppose, therefore, that a polymorphic equilibrium exists, i.e.
the A have the same sign for all i = 1,2, ..., fl.

Let P (i = i, 2, ..., n) denote the equilibrium gene frequenciLes as
before and Ve the corresponding value of V.

Consider the population in the state p (i= i, 2, ..., n) near the
equilibrium, so that

= P+x, (i = 1, 2, ..., n) (ii)
where the x are small and

= 0. (12)

Also write

X =Ea1x, (i = x, 2, ..., n) (13)

and

=Zx1X =Z2Ja1xx. (14)

In the next generation

Vp. =pEap

Pj(V'e+Xj) ('5)
Also

V =EP12aJpJ

= EP1(Ve+Xi)

i.e.

= Ve+XiXi+EPiX1

V= Ve+ (i6)
since

P1X = ExEa1P

= VeEX1 = o, by (12).
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V' =2Eapp
= Eajjpj(Ve+Xj)pj(Ve+Xj)

V 2 n v= L' 'a1p,p(X +X) +E Ea1p1pX1X

=
(V)2v+ { +

}
a1X1X

=

(f):
(-i) (V+28)+— 2PX2+ Za13ppXXj (i7)

Thus
3_ 2f7 2V " '

==
V2 +-EpX12+ V2==1

so that

— V = 2VeZPX2+I Ea1ppX1X +O(x3) (i8)

where 0 (x3) denotes terms of higher degree than the second in the x1.
Consider the terms

Ve

*3

= +
1 *3

= Z +0(x3)
*3

= a1P2X12+ 2aP1P1(X +X)2+2 21P1PXXi+0(x3)

= 2aP2X2 (X 2+0 (x3)

Thus

(V'_V)V2 =

(,)
i.e.

(V'_V)V2 = VePiXi2±• (20)
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Thus, for all sufficiently small values of the x (that is, when the
population is sufficiently near the equilibrium state) V'— V>o; this
means that the mean viability increases from one generation to the
next.

4. NECESSARY AND SUFFICIENT CONDITIONS FOR
STABILITY OF EQUILIBRIUM

The result obtained in the last section will be used here to obtain
sets of necessary and sufficient conditions for a polymorphic equilibrium
to be stable.

Consider
V= V(p1,p2, ...,p) =EZap1p (21)

as a function of the frequencies p, which are restricted by the con-
dition (2). Introducing the Lagrange undetermined multiplier A, V
will be stationary with respect to variations in the p subject to the
restriction (2) whenever

= (P1,p2, ...,p) = V+A (22)

is stationary.
This occurs whenever

= o, all z = I, 2, ..., n (23)

which is

2ap+A = 0 (i = I, 2, ..., n) (24)

But this set is precisely the set of equations () which determine
the equilibrium gene frequencies P1. Hence, if an equilibrium exists,
it is a stationary point for V.

From this observation and the result obtained in the last section
it is easy to see that

(a) if the equilibrium corresponds to a relative maximum for V
then it is stable

(b) if it corresponds to a minimum value of V then it is unstable
(c) if it corresponds to neither a maximum nor a minimum it is

either semi-stable or neutral.
In this paper only conditions determining stability will be dis-

cussed. These may be obtained by examining the conditions which
determine the nature of the stationary value of V. Since, by (i6),

V= V+6 (i6)
it is evident that V has a relative maximum at the equilibrium if and
only if the quadratic form

T2
=EEa1x1x (i)
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is negative definite for all real x subject to the restriction (12). A set
of necessary and sufficient conditions for this to be the case is (see
Ferrar (1951))

a11 am I a11 a12 am I
anl ann i >o, a21 a22 a2 I <0
I I 0 a1 an2 ann I

I I I 0 (25)

a1 a12 ... a1, ,1 a1 I

a21 a22 ... a2, n—i a2n

a1, 1 a1, 2 a_1, n—i 0n—l n
a2 ... a,,, n—i ann

I I ... I I 0

according as n is even or odd respectively.
These conditions, together with the conditions for an equilibrium

to exist, viz.

the A1 (i = i, 2, ..., n) all have the same sign (26)

are necessary and sufficient for a stable equilibrium.
Introduce the notation

a11 a12 ... a, am I
a21 a22 ... a2r a2,, I

Dr= (27)
an ar2 ... arr am

a,,1 a,,2 a,,,. ann I
I I ... I I 0

and
a11 012 ... air a1,,
a21 a22 ... az,. a2,,

an arz ... a,,. am

a,,1 a,,2 ... a,,,. ann

Then (25) may be rewritten

I)r+lD>O, (r I, 2, ..., n—i) (29)

It will now be shown that an equivalent set of conditions, necessary
and sufficient for a stable equilibrium, is (26) together with the set

(—i) TLr>0 (r = I, 2, ..., n—i) (30)

For, let
a,) (1, j = I, 2, ..., r, n) denote the cofactor of a1 in

Dr (r i, 2, ..., n—i), and a (i — i, 2, ..., r, n) denote the cofactors
of the elements of the last row and column of Dr (r I, 2, ..., n—i).
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Then the determinant which is adjugate to Dr has the shape

a a2 ... aç? a aja a ... 4') 4') aj
ci a' ... a) a aa a ... as') 4')a a ... ac') at') tr

and it is clear that
Dr_i. (32)

Applying Jacobi's Theorem to Dr and its adjugate we have

Dr_iLr—a') = r—i'r (33)

Beginning with (29), D1>o is simply

2a, >a11+a
whence

4a
i.e.

(i)
Then, applying (33) successively for r = 2, 3, ..., n—i, we have

L'2>0, L3<O, ..., (_j)n_iz_1>o, which is (30).
On the other hand, starting with (30), the last equation in this set is

(_I)1L\_1>o. ()
Also

= —2J'A. (36)

Now

= 8jkn—i' for each i, k (37)

where ik ifi=k (8=oifik J
Whence

. ' =
k = x j= i

so that
= n—1

that is, using (9)
= n—i for each i. (39)

Since each is positive, at least one of the A must have the same
sign as zX and, by condition (26), each A3 (j= i 2, ..., n) has the
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same sign as z 1 finally, by (36), D_1 has the opposite sign to
n—15 whence

(—i)D5_1>o. (40)

Successive application of () for r n—I, fl—2, ..., 3, 2 yields
(—i)D5_2>o, ..., D2<o, D1>o which is (29).

Thus (29) and (30), together with the equilibrium conditions (26),
are two equivalent sets of conditions, necessary and sufficient for stab-
ility. Note that (30) imply (29) subject to (26), whereas the converse
is true unconditionally.

In the notation of section 2

V D D1
since

lXn_i — z, D5 ==
From () it is at once apparent that

1r—1r r—1'r, (r -— 2, 3, ..., n—i)

so that if the conditions for stability are satisfied

(r 2, 3, , n_I).* (i)
Dr Dr1

Repeated application of(41) for r = n—I, n—2, ..., 3, 2 giveS

v = a—a11a5
8

D1 2a15—a11——a715
But

a+a 2a11a
whence

>0.
Tb erefore

V8>a11 (42)
and similarly

V8>a (all i = i, 2, .., n). ()
Thus a necessary condition for a stable equilibrium is that the

viabilities of the homozygotes must be less than the mean viability of
the population in the equilibrium state. This may be interpreted
as a kind of generalised heterosis.

5. THE SPECIAL CASES OF TWO AND THREE ALLELES

In this section the case of two alleles, for which the results to be given
are well known (see, e.g. Fisher (1922), Haldane (1926) and Wright

* The inequality is strict for r = n—i, since = o under the conditions for
a non-trivial equilibrium; so that = A >o.
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(ii)), is discussed very briefly; and that of three alleles in some
detail.

() Two alleles

Consider two alleles A, B with genotypic viabilities as follows

Genotype AA AB BB
Viability a h b

The viability matrix is (a hh b
so that, in the notation of section 2,

A1 =
A2 = a—hJ

(44)

and the condition (26), for an equilibrium to exist, is that these quan-
tities must have the same sign, so that either

(i) h>a, h>b ()
or (ii) h<a, h<b

The two sets of necessary and sufficient conditions for stability
are, in addition to (44), respectively

a h i
h b i >0 (46)
I I 0

and ah
h b <°

of which (46) 1S
(h—a)+(h—b) >0 (48)

while (.7) is
h2>ab (49)

both of which require () (i).
Thus stable equilibrium between two alleles occurs if and only if

the heterozygote is more viable than both homozygotes.

(ii) Three alle!es

Consider three alleles A, B and C at a single locus. Using the riota-
tion of Owen (içj) the genotypic viabilities are represented by the
scheme

IA B CA h gB h b fC g fc
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Let
a Ii &hbfg f C (50)

and let the cofactor of each element in this determinant be represented
by the corresponding capitals, so that

A = bc—f', H = gf—/zc, etc. (i)
Then the condition which must be satisfied for a non-trivial equi-

librium to exist is that the three quantities

A +H+G
H+B+F (52)
G+F+C

shall have the same sign.
In addition, the necessary and sufficient conditions for stability

are, in the two equivalent forms, respectively

a g i !a Ii g i
gc 1>0, Ii bf i <o ()r io gf c i

H
and

B<o, A>-o. (4)
Jacobi's Theorem applied to A and its adjugate reveals that

BC—F' aiX 1 Css)
and AB—H' = cA J

so that (54) imply also A< o, 0<0; thus (54) may be stated in the
symmetric form

A<o, B<o, C<o, A>o. (6)
This is the form in which the conditions are given by Owen (ig).
It is clear, also, that the same argument leads to a corresponding

symmetric expression of
Since

A = (aA+/zH+gG) + (aH+hB+gF) + (aG+hF+gC)
= a(A+H+G)+h(H+BH-F)+g(G+F+C) (7)

it follows that, when (52) holds, the condition A >0 is equivalent to
the condition that any one (and hence all three) ofA+H+C, H+B+F,
G+F+C be positive. Thus yet another set of conditions, necessary
and sufficient for a stable equilibrium is (52) together with

(i) at least one of A, B, C<o (8)
(ii) at least one of A+H+G, H+B+F, G+F+C>o

and if these hold then in each case all three inequalities are true.
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As an example of the application of these conditions, consider the
case of three recessive lethals,

i.e. a = b = c = o. (59)

For equilibrium it is required that the quantities

f(g+h—f), g(h+f—g) and h(f+g—h)
should all have the same sign ; this requires all three quantities to be
positive andf, g and h to satisfy the triangular inequalities

f<g+h, g<h+f, h<f+g. (6o)

Moreover () are then satisfied automatically so that the con-
ditions (6o) are necessary and sufficient for stability.

In the general case, it is not possible to express the stability con-
ditions in terms of simple inequalities among the viabilities, as in the
two-allele problem or the case of lethal homozygotes. The results for
two alleles might suggest the analogous relations

a, b, c<f, g, Ii (6i)
(expressing the superiority of each heterozygote over each homo-
zygote) for three alleles ; however (61) is neither necessary nor
sufficient for the existence of a stable equilibrium.

For, given (6 i), suppose that

a, b, c<J', g<h (62)
then

G+F+C =
for all sufficiently large Ii, so that (6x) is not sufficient.

On the other hand, the system
_.4 h_a 512, — 0, C — 32 ' 3_1i h_2.j —2,g—128, 32

has a stable equilibrium with gene frequencies (il -, ) andh<a, c;
thus (6 x) is also not necessary.

However, the system (6i) does imply the conditions (58), so that
if an equilibrium exists under conditions (6i) then it is a stable equi-
librium. But, as has been shown above, (6r) is not sufficient to ensure
the existence of an equilibrium.

The following conditions which are necessary (but not sufficient)
for a stable equilibrium will be established in succession

(i) No heterozygote is less viable than both the associated hcmo-
zygotes; that is, we cannot havef< b, c or g< c, a or h< a, b.

(ii) Not more than one of the heterozygotes is less viable than any
particular homozygote : that is, one can have, for example

f<a<g, h or g<a<h,f or h<a<f, g
but not f, g<a or h,f<a org, h<a.
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(iii) Furthermore, not more than one heterozygote can be less
viable than any of the homozygotes ; that is, we cannot have, for
example,

c<f< a<g< b<h.

(1) Follows immediately from the necessary conditions A< o,
B<o, C<o.

(ii) Consider the general condition (43) necessary for a stable
equilibrium, i.e.

A
Ve = a, b, c. (64)

This may be written

a(A+H+G)+h(H+B+F)+g(G+F+C)> t 6)(A+H+G)+(H+B+F)+ (G+F+C)
a, e C. (5

Hence we cannot have
g, h<a

or likewise h, f<b (66)
or f,g<c

Suppose now that h.<a,f<a.
Then, by (66), g>a, and from condition (i) h>b. (67)
The following possibilities arise

(a) f>b,f>c
(/3) f<b,f>c (68)
(y) f>b,f<c.

If either (a) or (/3) holds then

H+B+F=(/i—a)(f—c)-—(g—f)(g-—h)< 0. (69)

If (y) holds then by (66) g >c and

H+B+F =J(g—a)--h(g—e)+ac---g2
<f(g—a)+a(g—c)+ac—g2 (70)
= (g—a)(f—g)<o.

Thus in each case the relations h< a, f< a imply H f-B+F< o
and there is no stable equilibrium ; this together with (66) establishes
(ii).

(iii) We shall show that each of the inequalities

h<a,h<b,/z<c (7i)

implies f, g>a, b, c. (72)

For, taking the first case, h< a implies, using (ii), thatf, g >a.
Suppose now thatf< b.



STABILITY WITH MULTIPLE ALLELES 301

Then, by (ii), g, h >b
and this gives rise to the two inequalities

a>h>.b 1
and b>f>a J
which is impossible. Thus f>b, and the remaining inequalities are
established in the same manner.

It follows from (i), (ii), (iii) that there are only four essentially
different systems which can give rise to a stable equilibrium. These
may be typified as follows:

(a) a, b, c<f, g, h
(b) b< h< a, c<f, g
(c) b, c< h< a<f, g
(d) a, b< h< c<f, g

In (a) all the heterozygotes are more viable than all the homo-
zygotes; an example of such a system has been given already (see

(6o)).
In (b) one heterozygote is less viable than two homozygotes, the

non-associated and either of the associated homozygotes. An example
is the system (63).

In (c), (d) one heterozygote is less viable than just one homo-
zygote; in the former case one of the associated and in the latter the
non-associated homozygote. These are exemplified respective[y by
the following systems

a = ft, b = o, c =
c-i _ h_Ij—4,g—2, 2

which has a stable equilibrium with gene frequencies (, -, ) and h< a;

and a = , b = o, c = ft
_.a i_i.

which has a stable equilibrium with gene frequencies (,, )
and h< c.

6. SUMMARY AND CONCLUSIONS

General conditions have been obtained under which a system of n
alleles at a single locus can be maintained in equilibrium by natural
selection in a large random mating population. It has been shown
that, when the population is in the neighbourhood of such an equi-
librium, the mean viability increases from each generation to the next.
This establishes a criterion for the stability of the equilibrium, which
yields sets of conditions which are necessary and sufficient for stability.
In the general case a necessary condition for stability is that the
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viability of each homozygote be less than the mean viability at equi-
librium. Roughly speaking, this means that not too many hetero-
zygotes can be less viable than any of the homozygotes. In the two-
allele case this is, of course, the classic condition that the heterozygote
is fitter than both homozygotes ; while in the three-allele case, it has
been shown that at most one hctcrozygous viability may fall below that
of at most two homozygotes.

The result concerning the increase in mean viability is in fact true
independently of the initial state of the population. This general
result depends on an interesting inequality among quadratic forms,
which requires a considerably longer and more difficult proof. The
special result proved here is sufficient for the present discussion.
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