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I. INTRODUCTION

IN a previous paper Bodmer and Parsons (1959) have outlined a
comprehensive analysis of x2 for data from balanced multi-point
linkage tests. By drawing an analogy with factorial experimentation,
it was possible to obtain components measuring genic viability effects
and interactions, recombination effects, parental heterozygote effects
and possible interactions between these three sources of variation.
These components were obtained from a corresponding analysis of
variance on the assumption that, at least to a good approximation,
the various effects were additive, whereas the usual treatment assumes
a multiplicative set of effects (Fisher, xç; Parsons, If these
are large, departure from additivity may be severe and should be
detectable in a difference between the interactions as measured on an
additive or a multiplicative scale.

If we take logarithms, we can turn a multiplicative system into an
additive system involving the logarithms of the original effects. It
will be shown that a similar analysis to that given by Bodmer and
Parsons, but based on the logarithms of the observed data provides,
to a good approximation, measures of the various effects and inter-
actions on a multiplicative scale. This makes it possible to detect
differences in the mode of gene action, at least on viability, from data
obtained in a balanced multi-point linkage test.

2. THE LOGARITHMIC TRANSFORMATION

The expectation of the observed frequency in a balanced three-
point test of the k°' genotype from the jth parental heterozygote and the
1th mode of gamete formation may be taken as a p Vk e (see table i,
Bodmer and Parsons (1959)). The parental hcterozygote, recombina-
tion and genotypic effects are a, p and Vk respectively and e5 is the
interaction between these effects. The logarithm of the expectation
is therefore the sum of the logarithms of the multiplicative efficts.
In order to be able to interpret an analysis of variance and so of x2
on the logarithms of the observed data, the logarithms of these para-
meters must satisfy restrictions of the form considered by Bodmer and
Parsons for the additive effects.

Consider the transformation of the proportions a1 given by
b1 = a [ra1].
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It is clear that -b1 = i and so log b1 = o. Furthermore, when all the

a1 arc equal b1 = i and so log b1 o. Hence, if we transform p to a
and Vk to w1, by similar transformations, the sums of the logarithms
of these new parameters are zero. Since e117, are not proportions which
must add up to unity, the form of restriction imposed on them is
immaterial. The restrictions appropriate for the multiplicative model
are

7re17, — J, rre151, = I, i-re1, = I, ire17 I.
given i given] given k all i,j,k

The condition that the total observed should equal the total expected,
is replaced by the condition that the sum of the logarithms of the
observed frequencies should equal the sum of the logarithms of the
expected frequencies. It may be noted that these conditions are
analogous to calculating a S.S. in an analysis of variance, given the
mean of the observations, and provide ancillary statistics indicating
a measure of the amount of information contained in the sample.

The component S.S. for the analysis of variance on the logarithmic
data will be of the form

lz
L kir1ogarj

where a1 ... a are the observed frequencies and k1 log ar is approxi-

mately the score for the jt multiplicative effect. The corresponding
information is given approximately by the variance of the score (see
e.g. Fisher (1956)), i.e. by

kir1Ogar] k v[logar] j k--v(ar)-
— in r=

where scoring is at equal expectations of the observed classes so that
v(ar) — m the overall mean. Hence if we multiply the components
in the analysis of variance by m, or m (loge i o)2 if the calculations were
done on logarithms to the base ten, we obtain the corresponding x2s.
The score for any effect is unaltered by variation in the other effects,
and the information may be expected to vary only by a small amount.
This analysis should therefore provide reliable measures for multi-
plicative effects of any magnitude.

3. MULTIPLICATIVE EFFECTS AND INTERACTIONS

It is possible to define effects and interactions for a multiplicative
system which are analogous to those defined for an additive system.
Thus, in terms of logarithms, the three-factor interaction, for example, is

[log abc +log a +log b +log c—log i —log bc—log ac—log ab]

=log 4\/
abc.a. b .
i . bc . ac . ab
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Hence we may define abc. a. b . C
as a consistent measure of

i . bc . ac . ab

three-factor interaction on a multiplicative scale. The principles of
confounding may also be applied, the ratios of the sets of confounded
treatments being indistinguishable from the block effects instead of
the differences.

It may be noted that for a multiplicative system estimation by
geometric means replaces estimation by arithmetic means. This
implies, for example, that in the model for a three-point test considered
above, when all the interactions ek = i, consistent estimates of the
various effects can be obtained by equating observed to expected.
The estimates will be simple functions of the observed frequencies,
whose variances can be calculated by Fisher's approximate formula
(Fisher, 1925-54), and may be expected to be fairly efficient.

When performing an analysis on the logarithms of the observed
data it is the multiplicative effects and interactions, as considered
above, which are being tested. There is thus a duality between
additive and multiplicative systems, the experimental techniques for
the one being applicable to the other.

4. NUMERICAL ILLUSTRATIONS OF THE ANALYSIS OF x2
WITH THE LOGARITHMIC TRANSFORMATION

In order to illustrate the method of analysis and the possibility of
detecting differences between additive and multiplicative gene action
an example is given of the analysis applied to an artificially con-
structed set of data for a two-point experiment.

The form of the analysis of variance for a two-point experiment
can be obtained exactly as that for a three-point experiment was
obtained by Bodmer and Parsons (1959). The data consist of observed
frequencies from four pairs of complementary genotypes, which can
be arranged in a 2 X 2 Latin square. From these are obtained the
"sums" and "differences " squares, giving the scheme for the analysis
of a two-point test shown in table i, where a and b are the two factors
concerned.

A recombination fraction of 20 per cent. was assumed and the
relative contributions of coupling and repulsion heterozygotes were
taken to be 9 8. Viabilities were assumed which showed a competition
effect, and the expected proportions for each class calculated as the
product of the relevant parameters. The set of data was obtained by
multiplying the expected proportions by a convenient observed total.
The assumed values of the parameters and resulting set of data are
given in table 2.

The competition effect is such as might be expected with additive
viabilities and one genotype considerably deficient in the coupling
phase when there is severe competition from the non-recombinant
normals. The viability of the b genotype is considerably improved
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in the repulsion phase when the normals are in the less frequent
recombinant category, and that of the severely deficient genotype ab

TABLE i

Scheme for the analysis of a two-point experiment
"sums" Latin square d.c.

Parental heterozygotes (rows) . . . . .
Recombination (columns) . . . . .
Two-factor interaction (diagonals) . . . . .

3
differences " Latin square

\Tiabilityx Parental heterozygote (rows) . . .

Viability >" Recombination (columns) . . .
Main viability effect of a (diagonals) . . . .

3
total of" differences " square

Main viability effect of b . . . . . .

7

TABLE 2

Artificially constructed set of data for a two-point experiment

Viabilities in
Genotypes

—- —.--
i ab a b

Coupling . . so 2 8 25

Repulsion . . I 0 3 9 8 30

Recombination 20 per cent.
Representation of heterozygotes: Coupling: Repulsion = 9: 8

Non-Recombinants Recombinants Total

Coupling 1 432 0 87

ab 87 b

Repulsion a 288 i 8i

b 255 ab 24

1308

is also improved a little. It should be noticed that both sets of viabilities
for coupling and repulsion show considerable multiplicative interaction
but only mild additive interaction.
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The x2 analysis on the original and the logarithmic data is given
in table 3. As expected, the two-factor interaction is significant only
on the logarithmic data, showing multiplicative but not additive inter-
action of the two gene effects on viability. The analysis on the original
data shows a highly significant viability xheterozygote interaction or
competition effect, but indicates a viability xrecombination interaction
of the same magnitude. It should be pointed out that in the analysis

TABLE 3

Analysis of x2 for the two-point data of table 2

xzs

Latin square of sums d.f.
Original Logarithmic

data data

Heterozygotes . I 0II O95
Recombination I 5O9I 6666
Two-factor interaction 275 492

3
Viability x Heterozygote

(competition effect) I P2
ViabilityxRecombination. . 64. o09
Main viability effect of a 863 1007

3

Main viability effect of b . . i 2381

of a two-point experiment a competition effect may inflate the
viability >< recombination component, but that the reverse is unlikely
to occur. It is interesting to note that on neither analysis is the slight
departure from orthogonality detected. The exceedingly low value
for the viability x recombination effect on the logarithmic analysis is
because the actual expected values were used for the data and so no
random variation has been allowed for. The known situation is seen
to be clearly and accurately represented by the analysis on the
logarithmic data.

The usual heterogeneity calculated from the 2 X 2 Latin square
of sums to detect viability interactions, is 57oI i. This considerably
underestimates the significance of the multiplicative interaction, and
it is to be expected, in general, that the accuracy of such a in detect-
ing multiplicative interactions lies between those obtained from an
analysis of x2 on the original and the logarithmic data. The estimate
of recombination obtained, using the product formula of estimation

L



162 W. F. BODMER

(Fisher, 1925-54), is oI865±ooI. Thus the effect of viability com-
petition on the usual method of estimation is appreciable though the
estimate obtained is not significantly different from the true value of
20 per cent. This effect may be expected to decrease as the number
of loci used increases.

An analysis on the logarithms of Wallace's (i) data for a
balanced three-point test involving the factors wavy-2 (wv-2), shaker-2

TABLE 4
Analysis of x2 on Wallace's (igj') data after taking logarithms

Latin square of sums x2

Parental heterozygote . . .
Recombination . . . .
Two-factor interactions . . .
Error . . . . . .

d.f. Pin%

3 563 20—TO
3 79.34
3 o98 70—50
6 82o 30—20

55

Latin square of differences

Viability x parental heterozygotes 3 236 50
Viabilityx recombination . . 3 488 20 50
Main viability effects . . 3 OI3 99 —98
Error . . . 6 i6ii 2—I

15

Three-factor interaction . . I 23o 20 — JO

3'

(sh-2) and sex in the house mouse is given in table 4. The analysis
is on the whole very similar to that given by Bodmer and Parsons
(i) cm the original data. None of the interaction components
show significant increases, showing that the effects are too small for a
difference between additive and multiplicative scales to be detected.
The only striking difference is the significant component for the error
term from the differences square. This is, however, the largest of
eight x2s, not including the component for recombination, but taking
this into account the significance level is still less than io per cent.
This supports the suspicion mentioned by Bodmer and Parsons (i)
that there exists some disturbance not taken into account by an analysis
of the above form. A closer examination of the original data indicates
a disturbance of the ratio of the complementary genotypes +sh2 1.
and Wv, +X. from the four parental hcterozygotes, the other com-
plementary pairs being unaffected. A x of i i6 is obtained with a
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probability of less than i per cent. This seems to confirm the above
suspicion, as such an effect cannot be explained simply in terms of a
competition effect or straightforward viability interaction. As the dis-
turbance is only indicated by the differences square it cannot affect
the estimation of recombination.

5. DISCUSSION

As with any x2 test, small numbers of observations render the test
inaccurate. Moreover large disturbances can arise from the differ-
ences of the logarithms of small numbers so that an analysis on the
logarithmic data is more sensitive to disturbances due to a small
number of observations. In order to take this into account some form
of weighted analysis, using the number of observations, or amount of
information, as weights, would be required.

Clearly, for it to be possible in practice to detect differences between
additive and multiplicative action of genes, the effects must be fairly
large or otherwise the two modes of action are approximately equivalent.
In general three- and higher-point experiments will prove very difficult
to run when there are severe viability disturbances. Hence differences
in the mode of gene action are most likely to be detected with two-
point experiments where more severe disturbances can be tolerated.
This is well illustrated by preliminary results from a two-point hack-
cross linkage experiment with the factors pallid and fidget in the house
mouse, being carried out by the author. Both these factors cause
severe reduction in viability, and the results so far obtained show
clearly multiplicative, as opposed to additive, action of the genes
concerned on viability. Similar results have been observed by Parsons
(i) with two-point experiments in Drosophila melanogaster.

Whether viability effects of genes are additive or multiplicative
will in general depend on the detailed physiological and biochemical
situation. For example, genes with some sort of dosage effect may
be expected to act additively. On the whole it seems more reasonable
to suppose that the viability effects of genes act in a multiplicative
way, the effects on the Maithusian parameter, as defined by Fisher
(1930), being therefore additive. However, there is, at present, little
data which could justify such an assumption.

The transformation to logarithms employed above is an example
of one of the many transformations that are used in statistical analysis
for diverse reasons. In this situation it is in fact employed to turn the
multiplicative system into an additive system to which the standard
techniques of analysis can be applied. A distinct meaning can be
attached to the transformation as used here and a similar process
could be carried out to investigate the possibility of gene action being
a mixture of the multiplicative and the additive as might, in general,
be expected to occur. It would seem, however, that in general due
consideration must be given to the meaning of a transformation before
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results from an analysis of transformed data can be legitimately
interpreted.

6. SUMMARY

i. The use of the logarithmic transformation in the analysis of a
multiplicative system of effects is described.

2. Consistent measures of multiplicative effects and interactions
are defined and the duality between multiplicative and additive
systems is discussed.

3. The methods of Bodmer and Parsons ('959) are applied, in
conjunction with the logarithmic transformation, to the analysis of
data from backeross linkage experiments.

4. The possibility of detecting differences between multiplicative
and additive gene action on viability in data from such experiments is
discussed.
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