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In problems of quantitative inheritance it has been customary to
make genetic analysis of populations using covariances between
relatives, the method outlined in the classical paper by Fisher (1918).
Associated with this approach is the notion of partitioning the total
genotypic variance into additive and non-additive genetic components.
The importance of this treatment of quantitative inheritance to the
genetical theory of natural selection has been made clear by Fisher
(1930), and the practical applications of these concepts to plant and
animal improvement have been increasingly realised.

In recent years techniques involving ‘‘ diallel crosses ” have been
used in problems which concern quantitative inheritance. The
methods used and problems attacked by this technique have been
diverse. Sprague and Tatum (1942), Henderson (1948, 1952), and
Griffing (1953) have defined and applied the notions of general and
specific combining ability to plant and animal experimental material
using a variety of diallel crossing methods, but without an exact
generalised genetic interpretation of the combining ability effects
and variances. Hull (1946, 1952), Griffing (1950), Jinks (1954) and
Hayman (19544, 1954b), again using diallel crossing systems, have
given procedures for estimating other genetic parameters in terms of
restricted gene models.

The present paper is an attempt to give, in terms of population
genetics, a generalised treatment of the major problems which occur
with the use of diallel crosses, to integrate wherever possible the
already existing techniques, and to show the relationship of the diallel
crossing method to Fisher’s method of covariances between relatives
as expressed in terms of additive and non-additive genetic variances.

We shall use the term * diallel crosses’’ to describe a procedure
in which a set of p inbred lines are chosen and crosses among these
lines are made. There are a maximum of p2? possible crosses, which
can be represented by a pXxp matrix with elements x;; such that x;;
represents the i*# inbred, x;(i4-j) represents the F, between the 1
and j** inbreds, and x, represents its reciprocal. Thus, the p2
combinations can be divided conveniently into three groups : (1) the

# inbreds themselves ; (2) one group of p—(ﬁ;—l) F,’s; (3) a group of
p(p—1)
2

M7 reciprocal Fy’s.

Experimental methods utilising diallel crosses may vary, depending

3r
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upon whether or not the inbreds and/or the reciprocal F,’s are
included. With this basis for classification, there are four possible
methods : (1) inbreds, one set of F,’s, and reciprocal F,’s are included
(all p2 combinations) ; (2) inbreds and one set of F,’s are included

2
F,’s and reciprocals are included but not the inbreds (p(p—1) com-
binations) ; (4) one set of F’s, but neither inbreds nor reciprocal

F,’s are included (MPT_I) combinations) .

Theoretically the important difference among the methods is
whether or not the inbreds are included. Since the term ¢ diallel
has in the past been associated by other authors with the methods
which include inbreds, we shall use the term ‘ modified diallel ” to
designate methods (3) and (4), which do not include the parents.
It is with these methods that we shall be most concerned.

Once the experimental data has been obtained by use of one
of the above methods, the problem is to estimate certain genetic
parameters of the population from which the inbreds are derived.
The problem may be considered in three major parts: (1) an
examination of assumptions and conditions which are necessary if
valid inductive inferences are to be made from the experimental
material about the parent population ; (2) a specification of estimable
genetic paremeters and their genetic interpretation using a generalised
gene model ; (3) a description of the available methods by which
experimental data are used to test hypotheses and estimate population
parameters.

I. ASSUMPTIONS AND CONDITIONS NECESSARY FOR
VALID INDUCTIVE INFERENCES

When a set of lines are used in a diallel crossing system for the
purpose of estimating genetic parameters of the population from
which the lines were derived, a chain of assumptions which relates
the experimental material to the original population must be made.
Starting with the experimental material, we must assume that the
set of inbreds is a random sample from a population of inbred lines
which in turn were derived from the parent population by means of
an inbreeding system free from forces which change gene frequency.

In addition to making these assumptions we must, before we can
completely specify the assumptions and conditions necessary for valid
inductive inferences, (1) determine the restrictions which must be
placed on the parent population to ensure that it can be truly repre-
sented by diallel crossing among its derived inbreds, and (2) determine
which of the four possible diallel methods gives unbiased estimates
of the population parameters.

We shall investigate the first problem by considering the particular
case in which the limiting frequencies of the homozygous genotypes

but reciprocal F,’s are not (P(P—-H) combinations); (3) one set of



DIALLEL CROSSES IN QUANTITATIVE INHERITANCE 33

are derived by imposing a self-mating system on an arbitrary popula-
tion. This population consists of genotypes involving two alleles at
each of two loci which may or may not be linked, i.c. recombination
value a<<}. We shall start with arbitrary initial genotypic frequencies
and obtain the limiting frequencies of homozygous genotypes using
the methods described by Fisher (1949). The self-mating system is
employed because it involves a minimum number of mating types
and because the mating type frequencies are equivalent to the genotypic
frequencies in any generation. We are generalising a solution given
by Nelder (1952).

TABLE 1

Generation matrix with self-fertilisation relating the genotypic frequencies in one
generation with those in the next generation *

Genotype | Frequency| ¢, 7o So to gy Ug | We | X0 | Yo Zeo
A,B,/A,B, ) it lololo|lt!l3!lolo ”:’ 243
A B,/A,B, 7 o 1 [ o o o 1 3 Ii'. a

4 4

A,B,/AB, 5 olol 1ol 3t |0l 21| o 94:'. ’241
A,B,/A,B, 1 o o o 1 o 1 o 1 1;. %’.
A,B,/AB, 2, o o o o 3 [} o o .a;-b ‘i;
A,B,/A;B, v, o o o o o 1 o o ? ‘;_b
A,B,/A,B, wy o o o o o o 1 o ﬂf 92_b
A,B,/A;B, % ) o o o o o o 3 az_b fz_b
A,B,/A,B, 7N o o o o o o o o -bz—' %’
A,B,/A,B, e o o o o o o o | o 52: %:

* 3 js the recombination fraction such that a+5b = 1.

The generation matrix (denoted as A) relating the frequencies
in one generation to those in the next is given in table 1. Solution
of the determinantal equation |A—AI | = o yields the latent roots
and their corresponding principal components as given in table 2.
Associated with each of the multiple roots A = 1, } are four pair wise
orthogonal vectors which taken together form a 4X10 matrix of
rank four. This matrix premultiplies its appropriate A matrix to
give a 4 X 10 zero matrix.

Using these latent roots and principal components we obtain the
limiting frequencies for the homozygous genotypes as n—> . These
are given in table 3.

If the initial genotypic frequencies in the parent population are
those that would occur under equilibrium conditions with random

c
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mating, and if the gene frequencies for A, A,, B, and B, are p,, p,,
¢; and g, respectively, then
(freq. Of""1“\11311312%—> 0191, (freq. of A,A,B,B,) — p.45,

n—»w

(freq. of A;AB,B,) — p,9,, and (freq. of A,A,B,B,) — p.q;.
n—»0

A—>00
TABLE 2
Latent roots and their associated principal components
Principal components
Latent
roots
q r s [2 u v | w | x > 4
[ A= I I I 1 I I I I I 1
A=1 J|B= I —1I I -1 1| o o|—1 o o
- l C= I —1 —1 I ol 1|—-1! o o o
D= | (1+424a) | (1+2a) | —(1+28) | ~(1+22) | o| o| o| o] (b—a)—(b—a)
E = o o o o 1{—1| o o o
A=13 F= o o o o ol o 1 |-1 o o
- G= o o o o I 1 I I 2 2
H = o o o o —1 |1 I I o o
A= _:ab I= o o o o o ofl of o 1 1
A= b—:—a J= o o o o of ol of o 1 -1

It is obvious that the genotypic frequencies occurring in the original
population can be obtained by diallel crossing among the derived
inbreds (if their limiting frequencies are taken into consideration).

TABLE 3
Limiting frequencies of homozygous genotypes
Genotype Frequency
_ 1 a
A;By/A;B, Z:»; qo+§“o+§”o+[2(l _{_21‘)])\,+[l +2a]z°
I
AmiBs | oz bt [ be [ e
a
A;B,/A B, 50 = sortb-Hh+ [1 +2a] ot [2 C _:_M.)]z.,
B,/A,B =1 4 !
AdBi/AqB, e °+&v°+&x°+[l+2a]y°+[2(l+2a)]z°

It is equally clear that with populations which cannot be con-
sidered in equilibrium with random mating, diallel crossing among
the inbreds will not generate the original population, and thus valid
inferences are not possible using this technique.
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With regard to the second problem, the author is indebted to
Sir Ronald Fisher for pointing out that when random samples are
drawn from the population of inbreds it is necessary to employ the
“ modified diallel > crossing systems to obtain unbiased estimates of
the population parameters. We must defer to the appendix a demon-
stration of this fact since we consider parameters not yet defined and
estimating procedures not yet described.

2. SPECIFICATION AND INTERPRETATION OF
GENETIC PARAMETERS

Since the diallel analysis is applicable only to random mating
populations in equilibrium, the following discussion will be restricted
to such populations. However, in other genetic respects we wish to
consider a completely general situation. Thus, we want the genetic
analysis to deal with an arbitrary number of alleles at each of an
arbitrary number of loci. We want, in the final analysis, to interpret
the genetic parameters in terms of a completely generalised gene
model which will allow any magnitude of additive genetic, dominance,
and epistatic effects.

The genetic parameters of interest are the additive and non-
additive genetic components of the parent population genotypic
variance. We assume that the population phenotypic variance is
partitionable into various genotypic and environmental components
as follows :

o?p = 0 +o%g, and since o®; = 0%, +0?y,, then o = 02, +0%ya+0%g
where o®p = population phenotypic variance.
o%; = population genotypic variance.
o®, = additive genetic variance.
o®ya = non-additive genetic variance.

a?ya may be partitioned into dominance and epistatic variance, as
will be shown later.

The concept of partitioning the total genotypic variance into
various genetic compounds is due to Fisher (1918) and used by him
in evaluating covariances between relatives. Fisher (1918) also
originated the completely generalised genetic model which will be
used by the present author in connection with these components.
A model developed by Kempthorne (1955), which is adapted to
random mating populations and which allows a complete orthogonal
partitioning of the total epistatic variance, will also be used.

The estimation of the additive and non-additive genetic com-
ponents will be made from the experimental material in terms of
general and specific combining ability variances. Therefore, it is
necessary to start with random mating populations and (1) review
the definitions of additive and non-additive genetic variances, (2)
define the combining ability variances, and (3) show the relationship
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between the two sets of parameters in terms of a completely generalised
gene model.

In this section we shall use the summation convention in which
repeated suffixes (in those terms which involve gene or genotypic
frequencies) imply summation over these suffixes. For example,

vy = Z2Zpipid;; and pd;; = Zp.d,, etc.
i5 7

(a) Definition of additive and non-additive genetic effects
and variances

The definitions will be reviewed first for genotypes at one locus
only, and then generalised to include genotypes at two or more loci.

TABLE 4

Genotypic values and frequencies for a random mating population
of genotypes derived from alleles at one locus *

Marginal
Ay A, A, - — — A, frequencies
Ay dy dys dis - - - dim 21
A, dyy das das - - - dym pe
A, dy dys dyy - - - dym b3
Am dml dmz dm3 - - - dmm pm
Marginal
frequency 2 b2 by - - - bm I

* Genotypic frequencies are the product of appropriate marginal frequencies ; i.e.
frequency of d,; is p;p;.

A notation similar to that used by Kempthorne (1955) will be used.

1. DEFINITIONS FOR GENOTYPES AT ONE LocUs. Consider m alleles
Ay, A,, ... A, with frequencies p,, p,, ... p,, respectively. Genotypic
values, measured as deviations from the weighted population mean,
together with their associated frequencies are given in table 4. The
genotypic value of A;A, is defined to be d,;, and such that p,p,d,; = o,
L,j=1,2,..m

We define the additive genetic effect of A; as a; = p,d;;. These
effects are subject to the restriction p,a; = o. We define the non-
additive (dominance) effect of the A;A; genotype as 3,; = d;;—a,—a;
and these effects are subject to the following restrictions : §;; = 8y
and p;8;; = o for all ;. The §;; may be thought of as the interaction
between the A; and A; alleles.

In this way we derive the following model which represents the
genotypic value in terms of additive and non-additive genetic effects
d;; = a;+a;+38;;. The elements in this model have mean zero and
are uncorrelated in the population.
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The total genotypic variance is partitionable into variances due

to additive and non-additive genetic components as follows :

bipidi = 2p,02+p:pS %
These variances may be represented symbolically as o’z = 0%, +0?%)
where o%; = p,p,d; is the total genotypic variance, o?, = 2;a2 is the
additive genetic variance, and o?, = p;$,8;* is the non-additive
(dominance) genetic variance.

We note that the o’s can be obtained by the least squares procedure.
Assuming that the genotypic values can be expressed by the model
d;; = a;+a;+38;; we choose a’s such that the sum of the weighted
squared deviations from the linear model (a;+4a;) is a minimum.
The o’s so defined, together with the associated restrictions, are
identical to those defined above.

TABLE 5

Genotypic values and frequencies for a random mating population
of genotypes derived from alleles at two loci *

AB, AB, AB, — — — A,B,
AlBl lldll lldll lldlﬂ - - - lmdln plql
AIBS lldll lld23 lld28 - - - lmdlil plq’
AmBn mldnl mldns mldn: - - - mmdml DPmdn
Marginal
frequency J AU P14s s - - - Pmin 1

* Genotypic frequencies are the product of appropriate marginal frequencies; i.c.
frequency of idy; is pepsgaqr.

2. DEFINITIONS FOR GENOTYPES AT TWO OR MORE Locl. We shall
consider two genetic models under this heading : (2) a model in
which loci effects are additive, and (4) a model in which the loci
effects are not additive.

(a) Additive loci effects. When the loci effects are additive the
total genotypic variance is the sum of the separate genotypic variances
for each locus. To illustrate, consider the two loci case in which
there are alleles A;, A,, ... A, with frequencies p;, p,, ... p,, at one
locus, and alleles B,, B,, ... B, with frequencies ¢;, ¢,, ... ¢, at the
other locus.

Genotypic values, measured as deviations from the weighted
population mean, together with their associated frequencies are given
in table 5. The genotypic value of A;A;B,B, is defined to be ,;dy,
and such that p,p,q:9; :;d;; = 0. In the following notation, suffixes
placed before the constants pertain to the A locus and those after
pertain to the B locus.

c2
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We define the effects at the A locus to be :
10 = piq:q,; i385, = additive genetic effect of A,
30 = P:qxq; i, = additive genetic effect of A;,
40 = @49, ;;dx,—;0a— ;o = interaction (dominance) of A; and A;.

The restrictions on these constants are
pi@ =0, ;6 = ;8 and p; ;,8 = o.

Similarly, we define the effects at the B locus to be :
ay = p:ipid; 1% = additive genetic effect of B,,
a, = p:pidx iilx; = additive genetic effect of B,,
8y, = pibp;i iidy;— ar—a, = interaction (dominance) of B, and BI.

The restrictions on these constants are
grox = 0, 8, = 3, and ¢,3,, = o.

The model is thus derived to represent the genotypic value of
AAB,B, in terms of additive and non-additive genetic effects and
may be written

i1 = jo+ja4;8 Fap+a,+3,.

After the total genotypic variance has been partitioned into
additive and non-additive components for each locus the loci com-
ponents may be summed, i.e.

bib9ids i@k = 20; ;022907 +pi0s 192 40,0:8: %
or symbolically ¢%; = o2, +0®y, where
o®c = p:p:19x9, i1d,,® = total genotypic variance,
o?, = 2p, ;a®+2¢,a,” = total additive genetic variance, and
o®ya = &% = pip; ;9% +4,9, 8,2 = total non-additive genetic variance.

When loci effects are additive the extension to any number of
loci each having an arbitrary number of alleles presents no difficulty.

(b) Loci effects not additive. Fisher (1918) introduced epistatic
constants to account for the interaction of genotypes at one locus with
those of a second locus. The epistatic constants and their frequencies
for genotypes formed by alleles at each of two loci are given in table 6.
The epistatic constants are defined as

i€kt = il — ;00— 8 —a,—a,—§,

and by rewriting this equation we arrive at the representation of the
genotypic value of A;A,B,B, by the following completely general gene

model :
ildkl = u‘a+ia+ii8+ak+a1+8k1'|‘ii€kz-

The total genotypic variance is partitionable as follows :
Dby i0h® = 20; i0® 20,0, +5:05 8% +0,9,8, 2 H0: 0509, i1€k1°
which may be written symbolically as

2 2 —
0'2(; =04 ‘i“’NA2 = °A2 '|“3'D2 +‘712'
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ona? is broken down into variances due to two different types of
interaction, namely :
op? = P;p;::92+¢,9, 8,2 = interaction between alleles at the same
locus, and
o = p.0i9xq1 ii€xi® = inte.raction between genotypes at different
loci.
Imposing the restrictions

€k = 3i€k1s i5€k1 = is€0p0 Pils 1€k = O, AN §1q; y3€5, = O
on the 16 constants in table 6, results in four independent constants

TABLE 6

Epistatic constants and their frequencies for gemotypes derived jfrom
two alleles at each of two loci *

Marginal
B,B, B,B, B,B, B,B, frequency
AA, 11€11 11€12 11€21 11€22 Pl2
AjA, 12€11 12€12 12€21 12€22 ) 2123
AA, 21€11 21€12 21€21 21€22 y208
AzA, 22€11 22€12 2¢€21 22€22 2%
Marginal
frequency 0" 0192 9201 g2* 1

* The frequency of the constant e is pip;giq:-

which we arbitrarily choose to be ;;¢,,. The genotypic variance may
then be rewritten in the following form given by Fisher (1918).

Pibidqs it = 2b; ;02 +2q,0,2 +p:p; 182 +,9.8x,°

+ —I—[52+QP13Q192(91 11€11F 02 11€22)2 +201024:3(H1 116117 P2 22€11)°

49102919
420102953 (H1 116222 22€22) 2 +20220192(91 2261192 22€22) 21,

where
z = (p20:% 11€11—P1202% 11€20—P2701% 22€11102°05" 22€20)-

(b) Definition of general and specific combining ability effects and variances
and their relationship to additive and non-additive genetic effects and
variances

In an analysis of diallel crossing experiments it is convenient to
redefine the genetic model in terms of general combining ability

(g.c.a.) and specific combining ability (s.c.a.) effects and variances.

To give a general definition of g.c.a. and s.c.a. effects we need
only consider the representation of the zygotic array of a random
mating population in equilibrium as the square of the gametic array.
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This representation may take the form of a two-way multiplication
table (for example table 5) in which the multiplying elements forming
the row and column margins are the gametes together with their
respective frequencies, and the products in the table represent the
genotypes and their frequencies. We define, then, the g.c.a. effect
associated with the :** gamete, say, as the weighted mean value of
genotypes in the ,** row of the multiplication table. Thus, if the
value of the genotype in the ;;** cell of the multiplication table is 4;;
(measured from the population mean) with frequency f;f;, the g.c.a.
effect for the ;** gamete is g, = fid;;, The s.c.a. effect for the ;;**
genotype is s;; = d;;—g;—g;.

By use of these effects we can represent the ,;** genotypic value
as a linear function of the average value associated with each of the
gametes which combined to form the genotype plus the interaction
effect between these gametes, i.e. d;; = g;+g;+s5;;

We have defined the combining ability effects in terms of gametes.
When homozygous lines are used in diallel crossing techniques the
combining ability effects are often defined in terms of the inbred
lines. In this case the terms are equivalent since there is a one-to-one
correspondence between inbreds and gametes.

To show the exact relationships between combining ability and
additive and non-additive genetic effects we shall first consider
populations of genotypes involving only two loci and later generalise
to populations of genotypes which involve any number of loci.

1. POPULATIONS OF GENOTYPES INVOLVING Two Locl. We shall
again consider the two situations in one of which the loci effects are
additive and in the other not additive.

(a) Additive loci effects. Let us consider a population of genotypes
derivable from an arbitrary number of alleles at each of two loci as
given in table 5.

We define the g.c.a. effect associated with the A;B, gamete (or
with the inbred A;A;B,B,) as ;g; = p,4, :5d,- By substituting

udkz = ;0-}+;a +n'3 +ak+al+3kl

in the equation for ,g;, and employing the restrictions associated with
the elements in the model, we are able to determine the exact relation-
ships between g.c.a. effects and additive genetic effects, which are as
follows :

i&r = jatay

with restrictions X = 0.
& = ja‘l‘al } quu v8w

The s.c.a. effects are defined as ;s;, = ;;d5;,—;8,—ig, and when
appropriate substitutions are made we find that the s.c.a. effects
are a function of the dominance effects, i.e. ;;5,, = ;6+8;;,. The
TESLriCtions are ;;S;; = 181k Skk = 5:5kk> 135k = 3151k A0 iy i, = O
for each k.

The genotypic value of A;A;B,B, in terms of g.c.a. and s.c.a.
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eﬁ'ec.ts' is ,-jaV{C L = 8t i8 ik Tl.le total genotypic variance can be
partitioned into g.c.a. and s.c.a. variances as follows :

Dibi9x41 i8k° = 20:9x 18> +0i0i9x91 i3Sk

Symbolically this can be represented as ¢’; = 202, ., +0¢% ., and
hence the following equivalence exists between combining ability
variances on the one hand and additive and non-additive variances
on the other : ¢®, = 20%, ., and o’ = 0%,

(b) Non-additive loci effects. Consider the more restricted population
of genotypes derived from two alleles at each of two loci. The
combining ability effects are defined as in (14). However, the
additional complication of dual epistacy necessitates the following
genetic model : ;;d,, = ;a+ja+;8+a,+a,+8;,+;5€,, and, therefore,
the g.c.a. effects now include a linear function of the epistatic effects
as follows :

181 = 1a+a;+

I

= a+ta;— 4
4?1 1 %1 ? ! 4?291

I
Z = sa+tap,+
49192 2 = 20T 4?292

where 2z = (p,%¢,% 11€11—$1292° 1162002701 22€11102°q2" 22€23)-

182 = 10ta;—

Twice the g.c.a. variance contains not only all of the additive
genetic variance but also a portion of the epistatic variance, ..
I
20507 = 2p; ja¥+2qa’+ o —— 2°
. H 81020192
(z is a function of the linear xlinear interaction contrast in a 32
factorial expenment—see Cockerham (1954)).
The s.c.a. variance (res1dual genotyplc varlance) includes all of
the dominance and the remaining epistatic variance.
Thus, when dual epistacy is taken into consideration, the partition-
ing of the population genotypic variance is as follows :

o?c = o®y+0’p+a* or 0¥ = 20g.c.a.2+os.c.a.2'

However, 20, ,? = 0%, +}(linear X linear portion of ¢%), and o,.,? =
o®p+(residual o%;), where o? is the total epistatic variance.

2. POPULATIONS OF GENOTYPES INVOLVING MORE THAN TWO LOCI-
To generalise the analysis to any number of alleles per locus and
any number of loci, it is convenient to consider the gene model
developed by Kempthorne (1955) which allows a complete orthogonal
partitioning of the total epistatic variance. For definitions and an
elaboration of the use of the model we refer the reader to Kempthorne
(1955). We shall briefly consider the results when this model is
applied to the concept of general and specific combining ability.
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In populations of genotypes derived from an arbitrary number of
alleles at each of two loci the following holds :

(1) The genotypic value of A;A;B,B, as measured from the
population mean is expressed as :

i:idkl = ;a+t;0+;,0+ap+a;+8, +i(aa)k+i(a“)z+d(aa)k
+i(aa);+,(ad) g +4(ad) 4 +ii(8a)k +:1(8a), +;:(88) 1,

(2) The population genotypic variance is partitioned as :
o’ = o® s +0’p+0’ss +0ap+%pps

where o%, = additive genetic variance, ¢*; = dominance variance,
0%, 4 = additive X additive epistatic variance, o?,, = additive X domin-
ance epistatic variance, and o%p, = dominance X dominance epistatic
variance.

(3) The g.c.a. effect associated with the A;B, gamete is

i&p = jatagt+;(aa),

where ;a and «, are additive genetic effects, and ;(aa), is an additive X
additive epistatic effect.

(4) Theg.c.a.varianceis o,.,* = p; ;a® +gxa,* +4,9; ;(aa),* which
symbolically is o, ., 2 = }0%, +10%,,.

(5) The population genotypic variance can be partitioned in
terms of the combining ability variances as follows :

20g.c.a.2 = 0.2A +%02AA
as.c.a.z = ‘721) +'%‘71AA +02AD +C’21)D
‘72(3 = 0,2 +‘72D+ 02AA +o%4p +a*pp

There is no difficulty in generalising to any number of loci each
of which has an arbitrary number of alleles. The corresponding
partitioning of the population genotypic variance can be written
down as follows :

g.c.a.: ozA +%02AA +i02AAA +th.

s.c.a. g D+ 1o? AA +d? ADTO DD+4¢7 AAA+¢7 AAD T 0ADD+°2DDD+etC-

0

o’s =0’y +o’p+ 0%, +0%p+a® pp+ 0%aaa+0%aap+*spp +0%ppp F-€tc.

We note that o, .2 is equal to the covariance between parent and
offspring in a random mating population at equilibrium. This
illustrates the genetic connection between the diallel method and the

method involving covariances between relatives.

3. METHODS OF TESTING AND ESTIMATING GENETIC
PARAMETERS FROM EXPERIMENTAL DATA

We assume that the experimental material represents a random
sample from some specified random mating population about which
inferences are to be made.

Analyses for the two different ‘ modified diallel ” experimental
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methods will be given. For convenience we shall designate the
analysis as follows :

Analysis (1) : For the experimental method in which —=— 4 (P 1) F;’s and

their reciprocals are included.
Analysis (2) : For the experimental method in which only one set of

&;—_I) F,’s are included.

In both analyses we assume that a replicated experiment has been
conducted which yields the necessary phenotypic mean values and
a pooled error variance (with » degrees of freedom) associated with
these mean values. We shall not consider the more complicated
situation resulting from disproportionate sub-class numbers which
has been excellently treated by Henderson (1948).

Analysis (1) (Involving E(PZ;Q F,’s and their reciprocals)

We assume that the phenotypic value of the #** observation can
be represented by the model :

Xy = p+g;+8&+5;+r;+-error,
where i, j =1, 2, ... p, (i #J), and,

p = population mean.
gi(g;) = g.c.a. effect of the i**( j**) inbred line.

5;3 = s.c.a. effect associated with the cross of the i** and j** inbreds

and such that s;; = sy;.

r,s = reciprocal effect associated with the crosses of the i** and

J** inbreds and such that r;; = —r;.

error = environmental error effect associated with the ij** observation.
We assume that these error effects are not correlated with
each other nor with the various genotypic effects and that
they are normally distributed with mean zero and variance
o2 o2 is a pooled error mean square obtained from the
replicated experiment and has » degrees of freedom.

The analysis of variance and expectations of mean squares are
given in table 7. In determining the expectations of mean squares
we assume that g,, 5;; and r;; are random variables with zero means
and variances o2 o2 and ¢,2. The construction of this analysis of
variance is given by Yates (1947) and Kempthorne (1952).

To test the hypothesis ¢,2 = o,

use F = My with [m—_Q), n] degrees of freedom.
Me 2
To test 0,2 = o,
use F = My with [m, n] degrees of freedom.
Me 2
To test o2 = o,
use F = 11:/[-7[5 with [(p—x), [’(—-2-;1)] degrees of freedom.
s



4 B. GRIFFING

The estimation of the components of variance is accomplished by

equating the observed to the expected mean squares and solving.
Thus,

E Mr—Me o2 = Ms—Me and 62 — Mg—Ms

2 2 £ 2(p—2)
TABLE 7

Analysis of variance for the experimental method in which F,’s
and their reciprocals are included

o PR

Mean | Expectation of
*
Source DF Sum of squares squares can squares

1 2 . o +20,2+
R(g) Pt | P XK Xt s X Mg 2(p—2)a,?
s 1
R(s) p(p—3) {gé(xﬁ*—xﬁ) 2(#*2)2(x"+x")2‘l. Ms a,2+20,%

1
+ G=t=a X

R(r) P(P;") ZZH(xyy—%)? Mr 0,2 +20,%
i
Error from
replicated n e Me a,?
experiment

* where X.. = ZZx,;.
3
ii
TABLE 8

Analysis of variance for the experimental method in which one set of Fy’s
only is included

Source DF Sum of squares * Mean | Expectation of
squares| mean squares
R - L 2_ .__4...._. 2 M. 002+Ucz+
(2) p—1 p_sz‘ iG—3) X: g " oo,
R pp—3) | zsne L paixy 2 xe 2y 3
© | TR o X | M | et
i<j
Error from
replicated n -, Me A
experiment

* where X.. = Z2Zx,;.
i

i<j
Analysis (2) (Involving one set of P—(E;—” F,'s only)

We assume that the ¢** observation may be represented by

%;; = p+g +g;+s;+error,
where i<j =1, 2, ... p. The elements in the model may be defined
in the same way as in analysis (1).
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The analysis of variance which partitions the total sum of squares
into orthogonal reductions is presented in table 8. This analysis is
essentially the same as that first presented by Sprague and Tatum
(1942) and later corrected by Federer (1951). The expectations of
mean squares are found in the same way as in analysis (1).

To test the hypothesis o2 = o,

use F = Iltllij with [ﬁ([)T—g) s n] degrees of freedom,

and to test 0, = o,

use F = 1\1\% with [(p—r), @] degrees of freedom.

The estimation of components of variance is accomplished as
follows :
Mg—Ms
p—2

62 = Ms—Me, and 6,2 =

4. SUMMARY

When a diallel crossing system is used in quantitative inheritance
for the purpose of estimating genetic parameters of the population
from which the inbreds were derived, the following assumptions and
conditions must be met : (1) the parent population must be a random
mating population in equilibrium ; (2) the experimental set of lines
must be a random sample from a population of inbred lines which
were derived from the parent population by the imposition of an
inbreeding system free from forces which change gene frequencies ;
(3) a “ modified diallel ” crossing system must be used in which the
lines themselves are not included in the experimental set.

The additive and non-additive components of the parent genotypic
variance are estimated by use of general and specific combining ability
components of variance. The exact relationship existing between
these two sets of parameters is given using a completely generalised
gene model.

When interpreted in terms of the classical method of covariances
between relatives, the method of diallel crosses yields estimates
equivalent to those obtained by covariance between parents and
offspring.

Analyses of variance are given which may be used for testing and
estimating the population general and specific combining ability
variances from experimental material.

5. APPENDIX

We wish to demonstrate by considering a particular case that use of the *“ modified
diallel ¥ crossing system gives rise to unbiased estimates of the population para-
meters. We shall start with a random mating parent population in equilibrium
consisting of genotypes involving two alleles at each of two loci, which may or
may not be linked.
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It has been shown that if an inbreeding system is imposed on the entire population
(in the absence of forces which change gene frequency) the population of derived
inbreds will have the following distribution :

Genotype Designation Frequency
A A,B,B, L, L=
AA;B,;B; L, Jo =019
AyA,B,B, L, Js = P21
AzA,B,B, L, I J1= 5202

We assume : (1) the population of inbreds is indefinitely large and, therefore,
the frequencies of the inbred lines are not changed by sampling without replace-
ment ; (2) random samples of size p are drawn from the inbred population, allowing
repetition of lines ; (3) for each sample of lines a *“ modified diallel >’ crossing system
is imposed, and for convenience the method which involves one set of crosses but
not reciprocals will be used.

Specifically it is necessary to show that (1) the frequency of genotypes generated
by this experimental procedure, when averaged over all possible samples and when
calculated after sample frequencies have been taken into consideration, will yield
the genotypic frequencies of the original parent population, and (2) the expectations
of ,% and g,® taken over all samples are the true population parameters o,? and
o, (Symbolically this condition is indicated as E,(6,2) = o,% and E (,?) = o,%).

TABLE g

Frequencies of genotypes resulting from a modified diallel crossing system using the
lines indicated in the column entitled * Typical sample.”

Parti-| Sample| No. of | Sample | Typical |A;B; A;B, A,B, A,B, A;B; A;B, A;B;, A;B, A;B;, A,B,
tion | type |samples |frequency| sample {A;B, AB, A,B, A,B, A;B; A;B, A;B, A,B, A;B; A;B;

(4) | Siu 4 S Sin 1 o o o o o o o o o
(31) | Siuy 12 415 Sz 3 o o 0 } o o o o o
(2%) | Sius 6 6f:%f;* Siiez 3 % o o $ o o o o o
(21%)] Siie 12 12fi%ife | Sites 3 o o o 3 kS o ¥ o o

(19) | Sine 1 24fififefi| Sizaa o o o o ¥ ¥ 3 $ ¥ t

The particular illustration with which we are concerned necessitates making
a complete enumeration of samples of size four (this is the smallest possible number)
and deriving the expected values of the statistics in question over all such samples.

The sample frequency distribution may be obtained from the multinomial
(AL, +foL,+f5Ly+fiLy).4 We shall denote a sample having Ly, Ly, Ly and L; as
Sixi- It is convenient in tabulating frequencies to group the samples according
to the partitions of the number four. Thus (4) corresponds to all samples S;;; in
which all four lines are L; (i = 1, 2, 3, or 4), (31) corresponds to all samples S;,,;
in which three lines are L; and one is L; (i, = 1, 2, 3, or 4, but i # j), etc.

Table g gives the frequencies necessary to show that the ‘‘ modified diallel ”
crossing system does yield genotypic frequencies which, when averaged over all
samples, are identical to the genotypic frequencies occurring in the parent popula-
tion. To verify this, one must multiply the genotypic frequencies within each
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sample by the corresponding sample frequency and add over all samples. The
frequency terms can be reduced from the fourth to the second degree if use is made
of the identity (Zf;)2 = 1.

To demonstrate that the ‘“ modified diallel > crossing system yields unbiased
estimates of the population combining ability variances, it is necessary to perform
an analysis of variance of the type given in table 8 on F,’s derived from each of
the 35 different possible samples. For these analyses it is assumed that a genotypic
value, as measured from the population mean, may be represented by the model
dy = gi+g;+sy, where dy; is the genotypic value of the cross between the i* and
J* inbreds, g,(g,) is the g.c.a. effect of the i*3(;**) inbred, and s,; is the s.c.a. effect
of the ij*» cross. We then determine the composition of §,? and &, for each sample
in terms of squares and cross-products of the elements in the model, and finally
show that when all samples are taken into consideration the following is obtained :
E.((‘;’z) = zfigi’ = g,% and E,(3,%) = zﬁf?yiiz =g,%

To illustrate the procedure of evaluating &,% and G,% for a given sample, let us
consider the class of samples designated S;y; (1,7 = 1, 2, 3, or 4, but { << j). We
need perform only one generalised analysis of variance for this class of samples
and then obtain particular solutions for each sample by assigning appropriate
values for ¢ and j.

The mean values for F,’s derived from the sample of inbreds (Sy,) by the
imposition of the ““ modified diallel > crossing system may be recorded as follows :

i g

i
Xeg Xy Xig g
i x“ X3 Xg.
J X35 Xy
J Xg.
where : Xep = 8at+8 +Sapsa b, =do0rj

Xio = 48i+285 151255
X5 = 28¢+484 +2545+555
and x.. = 6gi+6g5+su+45u+si

The problem is to determine the expressions for §,* and §,® in terms of the g,
and s, elements using the analysis of variance obtained from table 8 by putting

b =4
The mean square for R(g) is found to be

X 2
Mg = (4308 = ) = Halerg) +Gusu)T
The mean square for R(s) is

X’
Ms =1} ( z‘xub.—‘i‘z‘x’w + T) = F(see—2 S¢5+539) %
a<

-~

Using these mean squares we deiermine &,2 and &,* as follows :

6, = H(Mg—Ms) = }[(8:—285)*+(Seu—Su5) (se5—515) +(8i—85) (56—345)]
and §,? = Ms = ¥(sq—25y+515)%

Thus, for each of the six possible samples which can be represented by S,
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TABLE 10

Composition of G, in terms of squares and cross-products of specific combining ability elements
JSor each class of samples corresponding to the partitions of the number four

Partition Sa:;np;;lc 1:::53"::: fri:?xlgzzy Square and cross-product terms
(4) S 4 fé None
(31) Siis 12 413, None
(2%) Siis 6 6f? F(su—2 si+s49)®

(21%) Siise 12 123 e | ¥(Sis—5u—Su+55)?

(1%) Siske 1 24fififefy | ¥su+satsatsmtsiton)®—3 susut
SirtSiet551) — 3 sa(Sat+sptsp) —
3 salSsitsus) — 3 Sia(ss+95%1) —3 55501)

TABLE 11

Composition of G, in terms of squares and cross-products of general and specific combining
ability elements for each class of samples corresponding to the partitions of the number four

Partition S?;npglc 1::“?;:{;1;: fri:?;g:gy Square and cross-product terms
(4) St 4 St None
(31) Suiis 12 41 H(gi—g) +(ss—5:)]?
(2%) Siass 6 615 | H(gi—80)?+ (sis—sis) (5es—s3) + (8—25)

Set—533)

(21®) | Sin 12 12f3ife | P2la 8gi—8i—gx) +3(8—81) % +4 881+
2 54i(SestSie—2 Sgi) +545(505—6 six+2 s5x)
+salsat2 six) +2[2 g:(5u—sn)
~&i(Sti—2 54;+2 Sa—55x) —&ulSus+2 544
—2 Sip—S5x

(1) Sirs U |24 fifififi | 25{3(82 te2 &t +80%) —2(gigs+8irtai8:
+8:8xt8:81H8x81) +5us(sin+ S+ +553)
Fsie(sart s+ 5us) +50a(s01(s50+521)
Fs(ssatser) F55ei—4(SesSe-+Sins s
Fsisi) +208i(seyt+SietSs0—S—S51—581)
+8&5(sy—sa—Sa+ s+ 55— 581) —
—&u(Sis—sintSii—Sie 55— Sp) —
&i(sy+sa—sutsp—sp—se)]}
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(i.e. S1129) S11ss S1104 Sgssss Speaer and Sgge) we find that the values for G,2 and
a,® are obtained by substituting the appropriate values for ¢ and j into the generalised
expressions given above.

In a similar manner we can obtain generalised 6,2 and ,% expressions for each
class of samples corresponding to the five partitions of the number four. These are
given in tables 10 and 11.

To show that &, and g,? are unbiased estimates of the population parameters
o,% and 0,2 (ie. E,(5,%) = ¢, and E,(G,%) = 7,%) we may (1) expand tables 10
and 11 to give a complete enumeration of all possible samples, (2) multiply the
frequencies of square and cross-product terms within a given sample by the sample
frequency, and (3) sum over all samples to obtain the weighted mean values for all
square and cross-product terms.

We are required to demonstrate that these expressions for E,(5,%) and E,(3,?)
which contain both square and cross-product terms can be transformed into
expressions containing squared elements only, and, in fact, to prove that

E(6,%) = Zfgs* and E,(5,%) = Zfif; ip
5

Let us consider E,(5,?) first. Since coefficients of terms involving g.c.a. effects
only and coefficients of cross-product terms involving g.c.a. and s.c.a. effects are all
zero, we need consider only square and cross-product terms involving s.c.a. effects.
If to these terms we add the following five expressions each of which equals zero,

{2 SilZfsi)% for i = 1, 2, 3, and 4.]

and (=) (Zfifysu)? |

4
we find that E,(5,?) = Zfif; s = o™

5 )
To determine E,(5,2) we must consider square and cross-product terms of
g.c.a. effects only, of s.c.a. effects only, and cross-product terms involving both

g.c.a. and s.c.a. effects.
By use of the identity, X fi%¢*(Z f;)® = —2Zf.fig:8;, it is possible to show that
: : i<}

2 3
the square and cross-product term; involving thé g.c.a. effects only, when summed
over all samples, yield simply Zf;g;* which is g,*
The over-all contribution to E,(&,2) of square and cross-product terms involving
only s.c.a. effects can be shown to be zero, if to the coefficients we add the following
expressions each of which is equal to zero :

(’—fl)(zf; Su)s fori =1, 2, 3 and 4
| and " (S ffisa) }

i

Likewise, the over-all contribution to E,(jo?) of the cross-product terms
involving both g.c.a. and s.c.a. effects can be shown to be zero, if to the existing
coefficients we add the following expressions each of which is equal to zero :

(—2)figs Zfisyfori=1,2,3, and 4]
1 e(szkg’kxgﬁﬁsu) f

When all terms are taken into consideration we find that E,(5,2) = Zfig;® = o,%
This completes the demonstration that for inbred samples of size four, the
“ modified diallel ” crossing system yields unbiased estimates of the population

parameters.
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