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1. INTRODUCTION

THE study of the inheritance of a complex character, such as yield in
wheat, is made difficult by variation caused by differences in the en-
vironment, and by the effects of interaction of environment and geno-
type. Yield per plant may be resolved into a number of sub-characters,
or components, which may not be independent in their genetic control
(Mather, 1949). The major components, each capable of further reso-
lution, are number of ears per plant, number of kernels per ear, and
average weight of a single kernel. Kernel weight has been shown to
be the least variable of these components (Smith, 1936).

Estimates of the numbers of genes which determine kernel weight
differences in wheat have already been published. Jasnowski (1934,
1935), quoted by Boyce (1948), obtained evidence that certain lines
differed by three pairs of genes. Worzella (1942) stated that the in-
heritance of kernel weight in a number of wheat (Triticum aestivum L.)
hybrids was multigenic. Boyce (l.c.), in a preliminary study, by em-
pirical methods, of the material described in the present paper, con-
cluded that the F, and F3 frequency distributions, and the difference
in kernel weight between the two parents, were the result of the action
of two or of three major gene pairs.

The plants were grown at the Wheat Researrh Institute, Lincoln,
in 1943/44, but a detailed analysis was not then carried out. Interest
in the material was revived following the publication in 1949 of Mather's
Biometrical Genetics.

2. MATERIAL AND METHODS

The material was one of four crosses used in a preliminary study of
the inheritance of kernel weight (Boyce, l.c.), comprising the parents,
F,, F, and reciprocal F3 generations of the Triticum vulgare cross (India
29, Si556 x Crete 2, S357). Where P1 (Si556) was used as pollen
parent the hybrid material was designated as F,A or F3A. The parents
were chosen for their high and low kernel weights from a collection of
foreign varieties. The purity of the lines had been maintained for
several years by sowing grain from ears which had been covered before
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anthesis. Each F3 plot of 52 plants was the progeny of a single F2
plant. The positions of eight F1 plots of 26 plants and eight F2A plots
of 52 plants were randomized among the F3 plots, which were not
replicated. Parent plots of 26 plants were grown in random order
after every second hybrid plot. Evenness of spacing and depth were
obtained by sowing individual grains with a "Woodfield" dibber.
The grains were sown two inches deep, with eight inches between the
rows of thirteen plants four inches apart.

Plants were harvested individually. For each plant the number of
ears (e), total number of kernels (en), and the yield (eng) were recorded;
the average number of kernels per ear (n) and the average weight of
one kernel (g) were calculated. Kernel weights for each plant were
expressed in milligrams, and ranged from 20 to 6j.

Plants with only one ear, or with fewer than forty kernels (about
five per cent of those harvested in each population), were omitted from
the analysis because average kernel weight would not have been deter-
mined with the same accuracy for these plants as for the rest of the
material, and because, in many of them, the grain was shrivelled
through disease or poor development. The analysis, therefore, is based
on healthy plants only.

In studies of quantitative inheritance the amount of material is
usually limited, and to obtain the maximum information (from the
segregating populations) relatively small parent and F1 populations are
grown. The size of the F1 is also limited by the work involved in
crossing. For any character, all population frequency distributions are
commonly presented in one figure. If the same frequency scale were
used for all populations it would be difficult to make visual comparisons
between them because the differences between the sizes of the popu-
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lations are large. A second method, still complicated, in small popu-
lations, by the relation between range and population size, would be to
adjust the populations to equal total frequencies. In figure r a two-
term moving average of adjusted kernel weight frequencies has been
plotted.

A limitation to these methods of presenting the data is the difficulty
experienced in distinguishing and comparing the population means and
variances, but on a cumulative probability scale, by which normal
distributions are represented by straight lines, the means and variances
of the populations are easily compared. In figure 2, which was drawn
on probability graph paper, there is, for each population, a point for
every second unit of kernel weight over the population range. The
numbers of plants in each kernel weight group were accumulated from
the lower end of the range and the figures so obtained were expressed
as percentages of the total number of plants. These percentages were
plotted on the probability scale against the kernel weight, at the mid-
points of the class intervals. For example, the percentage with kernel
weight 44. or less (which means, in fact, less than 445O) was plotted
at 445: if it were plotted at 440 and the other points were plotted
similarly, the mean, read off at the 50 per cent point, would be one
half of the unit of measurement, or mg., below the calculated mean.
This method of presentation was used by Keller and Li (i4), who
did not make this adjustment.

The normal distributions fitting each population are depicted in
figure 2 as straight lines fixed by plotting the population mean at 50%
probability, and the point twice the standard deviation above the mean
at 9772% probability.

5 0 20 50 00 50 9S 9772 99

Fig. 2.—Cumulative frequency distributions of kernel weight on probability scale. The
mean is located on the ordinate at 50%. The standard deviation is proportional to
the slope of the line.
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3. RESULTS

(i) Description of Populations

The populations had distributions close to normal (figure 2). The
six population means and variances and some correlations of the raw
data are given in table ia. The parent (S357) with the higher kernel

TABLE i

Population Statistics

(a) Average kernel weight (g); mg. per grain

Generation . . P1 P2 F1 F,A_—
F3A F3B

Mean per plant . 3496 50-10 46-88 43.41 4159 41'40
Standarderrorofmean 011 0-13 0-37 0-32 o-io6 0-097
Population standard

deviation , . 286 4-36 4'54 502 6o25 5281
Variance between plots, 4148** 13V98** 34-80 7129** 481.90** 283'48
Variance within plots - 580 1.'48 19'91 2378 2204 20-06
Parent-offspring

correlation . 0304 —0-264 — — O.737** 0.438**
Number of plots . 34 40 8 8 62 64
Number ofplants . 497 712 143 242 1968 2120

(b) Transformed variate: log1 (g—25)

Mean per plant . 0-9808 23022 20591 P7711 P5925
Standarderrorofmcan OI17 00098 00295 00270 0-0095 0-0089
Population standard I

deviation - . 0-3095 0-3157 03575 043I7 I 0-5416 0-4791
Variance between plots - o4839** o.6412** 0-1995 05034**I 3.8999** 22943**
Variance within plots . o-o68r 0-0682 0-124% 0-1769 0-1779 01662
Parent-offspring I

correlation - 0-251 —o-8o — — J o727' 0407**

weight had a greater variance within plots than the other parent
(F=2.15**), but there was no correlation between plot means and
variances in any population. Accordingly, the linear scale of measure-
ment would be considered satisfactory for descriptive purposes. How-
ever, for a biometrical analysis of the data, the scale should be such
that gene effects appear additive (Mather, 1949, ch. 3) and such that
there is no apparent interaction of environment and genotype. The
fulfilment of these conditions depends on the positions of the F2 and F3
means in relation to those of the parents and F,, and on the comparison
of the variances of the three genetically homogeneous populations,
P,, P2, and F,.

From table Ia, Mather's C=4F2 — 2F, — P1 P2 —5-3
and D=8F3—2F,—3P,—3P2= —I63

and using variances within plots V =2-16 and VD = I 48, so that C
and D (hence F2 and F3) were significantly lower than would be ex-

pected if gene effects were simply additive. In fact, F3 was slightly,
and significantly, lower than the mid-parent.
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(ii) Scaling
It may be seen also that the within plot variances of P1, P2 and F1

were unequal, so that neither criterion for the scale was satisfied. In
the F1, more than the scale was at fault, for the plot variance were not
homogeneous. A suitable foreshortening scale would equalise the parent
variances and improve the relative positions of the means, although it
would affect the normality of the distributions. A square root scale
was not sufficiently powerful. It was decided to use a modified loga-
rithmic transformation deduced as follows: writing C =log10( — a) for
in the expressions for C and D above, where g is the original kernel
weight, G the weight on the scale to be found, a a constant to be
determined, it was found that Cchanged sign for a between 25 and 30,
and D for a between 20 and 25, so that log (g — 25) seemed a satis-
factory variate for analysis. The use of log (— a) rather than the
mean of log (g — a) in calculating C and D made the approximate deter-
mination of a feasible. Unfortunately, on this scale the P1 variance
was higher than that of P2 (F=3.io**), and as a compromise a less
powerful transformation was needed. Use of log (g — io) equalised the
parent variances but was not satisfactory for the means, log2 (g —25)
gave a smaller variance ratio (F = I .38**) for the parents than did
log (g — 25), and by extrapolation log (g — 25) was thought likely

0U

0
E
0
C0
I-.

30

25

20

15

1•0

05

00

20

FIG. 3.—Graph of the functiony=log (g — 25) for transforming kernel weight figures. Ranges
Covering 95 per Cent of the population distributions. P1 and P2 ranges are shown on
both scales.
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to be adequate. This function is plotted in figure 3. The ratio of
parent variances with this transformation was i '04.

Final calculations of C and D gave —o3I7 and — 1-338, with
variances respectively 3-46 and 32-82, which is satisfactory though the
F3 mean is still slightly below the mid-parent. Once it has been decided
to use a particular, arbitrary, transformation, its theoretical form is of
little interest. It is unlikely that the same transformation would have
been appropriate in another year, as in both the preceding and follow-
ing years the average kernel weights of the parent varieties, grown in
the same locality, were significantly higher.

(iii) Transformed Data

The statistics derived from the transformed data are shown in
table ib.

As already stated, the F2 and F3 means are now closer to their
expected positions in relation to the means of the parents and F1. The
within-plot variances of the parents have been equalised. The F1
variances, based on only 343 plants, have not been used in the bio-
metrical analysis because they are still significantly different from those
of the parents. The transformation has had no appreciable effect on
variance ratios or on the parent-offspring correlations. Except in F1,
the between-plot variances are highly significantly greater than those
within plots. The large variance between plots of the parents is attri-
buted to soil heterogeneity.

The F2 variance between plots is similar to those of the parents,
the only genetic differences between F2 plots being due to sampling.
The within-plot variances of the F2 and F3, which express genetic
variation, are much larger than those of the parents.

Although there is no significant difference in average kernel weight
between the reciprocal F3 populations, their statistics have been pre-
sented separately. There are differences in the parent-offspring cor-
relations and in the between-plot variances: the former difference is
significant, and the latter almost significant, at 5 per cent. A highly
significant difference between the reciprocal F3's in average number of
kernels per ear is not discussed in the present paper. In the previous
year six F2 plots of approximately 6o plants had been grown, three F2A
and three F2B. A random selection of these plants was used for the F3;
their average kernel weights for A and B were similar to those of the
remaining plants. The over-all variance of the F2A, as of the sample
grown, was considerably greater than that of the F2B (F — 1.37, signifi-
cant at 5 per cent). This difference, for which there is no explanation,
would have contributed to the difference in F3.

(Av) Biometrical Analysis

(a) Components of Variation

The second-degree statistics of segregating populations are functions
of D, H and E, which are components of variation dependent on the
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fixable and the unfixable genetic variation and the environmental
variation respectively. The required statistics have the following
expression (Mather, l.c.):

VF2 = D + H + E1, the within plot variance of F2 plants,
Vgj = D + H + E2, the variance of F3 progeny means,

WF2/F3 =D + H, the covariance of F2 plants of the previous year
with their progeny means,

VF3 = D +H+E1, the mean variance of the F3 progenies.

E1 and E2 are the non-heritable components of variation for single
plants and for means of plots, estimated directly from the non-segre-
gating populations. The least squares calculation of D, H, E1 and E2
from these six relations is described by Mather (p. 65). The observed
"A" and " B " second-degree statistics and their averages, and the
calculated values of D, H, E1 and E2 are presented in table 2.

TABLE 2

Observed second degree statistics, derived estimates of genetic and environmental components,
and number of effective factors

A B Combined

Statistics

VF2

VFS
WF2/F3
VF3
Ei
E2
VVF3

0176913

013I369
0150489
0181914
0068185
00214i4
0436046

—

0070628
0051722
oI6612o
oo68139
o01615g
0532727

{:*
0100999
oioiio6
0174017
0068162
0018786
0484387

Components of variation
D
H
Ei
E2

o28o±129
—O072± .413

oo8i .035
0009± 035

—O0I7±I22
0.627± 489
oo8o± 027
oo8± P027

oo63±•o59
o628± 238
oo74± o'3
0025± 013

D-4 H 0244± io6 0296± .140 0377± o68

Number of effective factors
Ki
K2

156 (from D)
0009

o27 (from H)
0012

V39(fromD+-I-f)
ooi8

* These two figures are estimated from D, H, and E1, from the "combined" estimates
and the " restricted "

linkage estimates respectively. There was no "observed " figure.

For the separate "A" and "B" analyses the component E1 was
estimated directly as the within-plot variance of P2 or P1: E2 was esti-
mated as the between-plot variance of P2 or P1, divided by the harmonic
mean (2994) of the numbers of plants per F3 plot. Since no F2B was
grown, for the "B" and "combined" calculations it was necessary
to prepare and invert a new matrix of coefficients. This matrix and
its inverse are given in table 3.



'94 L. G. L. COPP AND G. M. WRIGHT

TABLE

Matrix used in " B " and" combined " analyses in calculating
D, H, E1 and E2 without VF2

144 32 64 128 — 05625 O'125 025 0'5
M= 32 9 32 i6 0'125 003515625 0'125 00625

256 64 32 512 0 O'25 0125 20 0
128 x6 0 512 0'5 0'0625 0 2'O

416 '536 44 —56 — 1664 —6V44 "yG —224
M — 1536 666 —224 176 —6144 26624 —896 7,04

25 44 —224 21 4 176 —8'y6 o'84 o'i6
—6 '76 —4 21 —2'24 704 o',6 084

In table 2 it will be seen that the results from the "A" and " B"
analyses are different, particularly with respect to the values of H.
The " combined "

analysis gave results very similar to the " B " ana-
lysis, but agreeing much more closely with the observed statistics. This
similarity may be merely an effect of the omission of F2 data. The
components of variation were not accurately determined. (The "A"
standard errors have two degrees of freedom, the others one.) There
is therefore little justification for their use in calculating the number
of effective factors which differentiate the two parents, or the degree
of dominance or potence shown. Mather has suggested that, in view
of the negative correlation between D and H as shown in the two
halves of the experiment, an estimate of D + jH should be more con-
sistent. The figures given in table 2 support this, and it will be seen
that D + H is estimated with the same precision as D. The variance
of the estimate depends on cDH and c11 of the inverse matrix.

(b) Test for Linkoge
A modification of Mather's "restricted " analysis, in which the

mean variance of F3 plots is omitted, is available as a test for linkage,
though in the present material it would not be sensitive. In the "B"
or " combined "

analyses there would remain only four statistics in-
volving D, H, E1 and E2, and therefore no residual degrees of freedom.
If the calculated "combined" values of D, H, E1 and E2 are used to
estimate the second-degree statistics, as in calculating their standard
errors, VFS may be estimated also, and the eleven observed "A" and
"B" statistics may be compared with these estimates. The sum of
squares of the eleven deviations, with seven degrees of freedom, is the
total sum of squares in the linkage analysis. Similarly a set of statistics
may be estimated from the " restricted " values of D, H, E3 and E2,
giving the remaining value of V2 in table 2. Since the four variance
components were calculated from only four statistics, the remaining
estimates are identical with the observed figures. The sum of squares
of the eleven differences between these figures and the observed "A"
and "B" statistics is a residual sum of squares; the difference between
the total and the residual is the sum of squares, with one degree of
freedom, for linkage. The ratio of the linkage and residual mean squares
was 527 (F.05, 599) which suggests that there is linkage between the
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genetic factors influencing kernel weight. However, in the absence of
an F2B this difference in variance cannot be attributed definitely to
linkage.

(c) Number of Effective Factors
The number of" effective factors " differentiating the parents may

be estimated by the use of components of variation and the parent and
F1 means (Mather, i.e., p. 102). If /c effective factors have equal
effects d, all in one direction, the expected value of (P2 —MP)2 is k2d2,

(P -MP)2which equals kD, so that /c may be estimated as K1 = 2

D and

(F -MP)2similarly, if H is known accurately, K1 = 1

H where P2 and F1

represent the corresponding averages and 2MP=P1+P2. No precise
estimate of K1 can be obtained from this material; the best estimate is
2(P2-MP)2+(F1-MP)2

H ,which, using (2D +H) from the" combined

analysis, equals i.3. If, as is likely, the parents differed in many
effective factors, an estimate of this order for K1 would indicate in-
complete concentration, the parents having both plus and minus allelo-
morphs. The data are compatible with a K1 as large as twelve.

A second estimate, K2, is derived from the variances of the F3 plots,
as the ratio of the square of the heritable part of the mean variance of
the F3 plots (D +*H) to a corrected variance of the plot variances
(VvF3, table Mather, i.e., p. 104). This K2 is expected to be smaller
than K1, except when K1 is reduced by incomplete concentration, and
the relative smallness of the K2 as shown in table 2 would indicate, if
the estimates were reliable and there were in fact many effective factors,
that the factors have unequal effects on kernel weight. But the number
of effective factors by which the parents differ remains undetermined,
and, in consequence, no reliable estimate can be obtained of the im-
mediate limits, or speed, of selective advance.

(d) Difference between Reciprocal Crosses

The components of variation estimated from the two halves of the
experiment give two different estimates of the genetic difference be-
tween the parents. If the discrepancy is real (and the differences in
components are certainly not significant) there is a difference between
reciprocal crosses. There is a real difference in two of the second-
degree statistics, the greater range of the means of the F3A plots partly
explaining their higher covariance with their parent plants. Similarly,
the variances of the F2A progenies in the previous year were greater
than those of F2B.

(e) Results in Other Years

The above analysis has been confined to the results obtained in
1943/44, when the difference in kernel weight between the two parents
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was I5I 0.1. In the previous year, under much better growing con-
ditions, the difference was 159 03, and the higher parent averaged
573±O2 (compared with 5°i The relation of the F1 and F2
means to the parent means was similar in the two seasons. Three of
the F2 plants were selected for further study, two with average kernel
weight slightly greater than P3 and one much lower than P1. Their
F3 progenies, grown as part of the main experiment, had average kernel
weights much closer to the F3 mean than the original plants were to
their F2 mean, although the third progeny was again lower than P1.
The progenies of four plants from each of these F3 plots were grown in
the following year, again under good conditions, the F3 plants in each
plot being selected to cover the plot range of kernel weight, and aver-
aging close to the plot average. In this F4 the kernel weights of the
progenies derived from the two high F2 plants were all nearly as high
as the high parent, which averaged 5P7 but the progenies from
the low F3 plant were significantly above the low parent. The original
low F2 plant was apparently strongly affected by its environment, yet
the single-plant selection in F3 was effective, and much more effective
than selection in F3. This would suggest that the number of effective
factors by which the parents differed was not large.

4. DISCUSSION

In this experiment, as in some of those listed by Mather, the com-
ponents of variation were not estimated precisely, although much
material was grown. The design of the experiment did not satisfy all
the requirements for biometrical analysis prescribed by Mather; the
F3 plots were not replicated, the F2 and F3 plots were twice as large as
those of the F1 and the parents, and the two parents were sown in
random order at regular intervals. Only the first of these defects is
serious, but it has been pointed out recently (Mather and Vines, un-
published) that more information will be obtained by the growing of
a given number of unreplicated F3 families than from half that number
in two replications.

The plots were arranged in eight adjacent blocks, but the parent
plots showed no significant block differences. Block differences in the
F3 would be confounded with genetic differences between plots. Repli-
cation is desirable, to supply a more precise estimate of the errors of
the components of variation and for the test of linkage. Unfortunately,
different numbers of plots of the P1 and F3 were harvested from each
block, so that an analysis with eight "replicates" would not have
been justified. The separation of the reciprocal crosses in the present
material provided in the second-degree statistics a set of eleven devi-
ations. The standard errors of the "combined" estimates of D, H,
E1 and E2 derived from the deviations from the "combined" second-
degree statistics had only one degree of freedom. If the deviations
from the separate "A" and " B " statistics had been used, there would
have been seven degrees of freedom available, but the differences be-
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tween the reciprocal crosses were such that the test of significance of
the components would not have been improved.

It was not possible to find a scale of measurement on which the
parent variances would be equalised and the F3 means would be higher
than the mid-parent, though on the scale adopted the F3 was not
significantly below its expectation. The form of the transformation is
restricted mathematically only by the condition that it must be con-
tinuous and monotonically increasing over the range of expression. In
studies of quantitative inheritance there is no reason to expect that one
of the "standard" transformations will be the most appropriate. A
biometrical analysis of the untransformed data led to conclusions similar
to those presented; the transformation made the data conform more
closely to the theoretical genetic criteria but its use has not provided
more, or more precise, information. It might be suggested that the
F1 mean should have been ignored in testing the scale, since the F1
plot variances were not uniform, but the mean itself was accurately
known, and the F3 mean was still significantly below expectation based
on F2 and parent means. The most satisfactory effect of the re-scaling,
forced to equalise the within-plot variances of the parents, was the
equalising of the between-plot variances of the parents and F2. Their
ratios were changed from i : 3I8 : P72 to I : P33 : P04.

The difference between the reciprocal crosses affects the estimates
of D and H, but not D + H. It has been stated that the difference
may be attributable to a difference in the F2 of the previous year, but
the origin of this difference is unknown. It is unfortunate that no
F2B was grown with the F3's. The original F2 difference might have
been a consequence of differential incidence of seed-borne (and hence
"maternally inherited ") disease in the first F1 plants.

In this material the weighting of the second-degree statistics was
not conducive to the improvement of the estimates. Weighting the
observations E1 and E2 heavily did not increase the accuracy of esti-
mation, which suggests that the re-scaling had not removed all inter-
action of genotype with environment. A disadvantage of weighting
is that the required matrix of coefficients is not one of the standard
forms, and is not symmetrical. The standard matrices are relatively
easy to invert by Fisher's method, particularly if the equations set up
are cleared of fractions; the terms of the inverse matrices are found as
fractions with a common denominator which is, apart from powers of
two, the value of the determinant of the original matrix. Thus in

8704Mather's table 12 (p. 6i) CHH is exactly —, which equals 9359I3g8,
and not 93591441 as given.

Kernel weigit was shown by Smith (1936) to be the most effective
yield component for differentiating between certain varieties of wheat.
The present parents were chosen because they differed widely in average
kernel weight: g86 per cent of the parent plants could be classified
correctly on kernel weight alone, and about half of the remainder were
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classified correctly if number of kernels and number of ears wcrc also
taken into account.

Boyce (1948) showed that the shape of the F2 distribution of kernel
weight could be explained by the segregation of two partially dominant
genes, hut she was unable to find any satisfactory explanation for the
F, distribution. No doubt it would be impossible to get a statistically
satisfactory lit in this large F, (Haldane, '949). Formal estimates of
number of genes, or effective factors, are unreliable, but they are
valuable in indicating whether the effects of genes are equal and in
the same direction. The data suggest that the effective factors in flu-
encing kernel weight are possibly linked, have unequal effects, and do
not all act in the same direction.

Effectiveness of selection for yield components may be less than for
total yield (Boyce et al., 1947). In the material of Palmer (1952),
although selection for kernel weight was effective, it had no effect on
total yield, because kernel weight was negatively correlated with num-
ber of kernels per plant. The present F4 data show that a line with
kernel weight as high as the high parent is recoverable, and that it may
be possible to select a line as low as the low parent. This information
about the limits of selection is more definite than that obtained from
the biometrical analysis.

The application of Mather's methods of analysis has not been suc-
cessful. The variances and covariances of the segregating populations
did not have the general relationships expected on simple genetic
reasoning: the F2/F, covariance was relatively high in the "A" material
and low in the " B ". There are several possible explanations. The
difference between parental genotypes is fixed, but would have a dif-
ferent expression in another environment. Some mistakes would have
been made in counting, weighing and computing, and these would
have increased the error variances even if no bias were introduced.
Non-heritable variation, sampling variation and residual genie inter-
action would have lowered the precision of the analysis. Sampling
variation would be expected to be small in this large material, and
non-heritable variation appears to have been adjusted by the re-scaling,
leaving residual genie interaction as the most probable explanation for
the lack of success. there is no suggestion that any other method of
analysis would have given more information.

5. SUMMARY

x. The inheritance of kernel weight was studied in the first three
hybrid generations of a varietal cross in Triticum vulgare, using the
biometrical methods developed by Mather.

2. A transformation was derived by which the data satisfied Mather's
two criteria for an adequate scale of measurement. The empirical
method of obtaining the transformation, by means of the formulae for
the tests of a scale, has been explained.
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3. The advantages of presenting a set of frequency distributions on
probability graph paper have been discussed.

i. Although the material was large the estimates of the genetic and
environmental components of variation were not sufficiently precise to
enable any definite conclusions to be drawn regarding the number of
effective factors segregating, their linkage relationships or the possible
limits to selection. It has been suggested that residual genie inter-
action has affected the precision of the estimates.

5. There were unexplained differences between the distributions of
the reciprocal F3 progeny means, which produced differences between
the separate estimates of the components of variation.
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