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II. THE USE OF THE PRODUCT FORMULA FOR THE ESTIMATION OF 
LINKAGE IN INTERCROSSES WHEN DIFFERENTIAL VIABILITY IS 
PRESENT 

NORMAN T. J. BAILEY 

The offspring of intercrosses between double heterozygotes of the 
constitution AB/ab (coupling) or Ab/aB (repulsion) fall into four 
phenotypic classes : AB, Ab, aB and ab. If viability is unaffected 
the expected numbers in these four classes are, respectively, 2 +8, 
1 -8, 1 -8, and 8; where, if p and p' are the recombination fractions 
for male and female gametogenesis, 8 = pp' for matings in repulsion 
and 8 = (1 -p)(1 -p') for matings in coupling. Suppose the observed 
and expected numbers are as follows:-

TABLE 1 

AB Ab aB ab 

Expected 
: I 2+9 I-9 I-9 9 x¼n 

Observed a b C d 

where a+b+c+d = n (1) 

Now as Fisher and Balmakund (1928) have shown, the consistent 
estimate T of the parameter 8, given by 

ad_ T(2+T) 
be - (1 -T) 2 . (2) 

is an efficient estimate. For we have the maximum likelihood equation 

Further, 

oL =~ _b+c +'! = 0 
08 2+8 1-8 8 

:. n82-(a-2b-2c-d)8-2d = o 

var 8 = -i/Eo2L = 28(1-8)(2+8) 
882 n(1 +28) 

If we now use the formula : 

(oT) 2 (oT) 1 

var T = Em oa -n on 

(3) 

(4) 

(5) 

. (6) 

where the m's are the expectations, to calculate the variance of T 

given by (2), it will be found equal to var 8 in (5). Tis thus efficient. 

Differential viability In one pair of factors 

Let us now suppose that the viability of A phenotypes relative to a 
phenotypes is u. This problem has been treated by Fisher ( 1939), where 
he shows that the product formula can still be used. He gives an 
expression for the variance of the corresponding estimate of 8 involving 
u, which is in tum easily estimated from the data. It wiJl be seen 
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below that this estimate of 0 does not utilise quite all the information 
available but for moderate disturbances of viability very little is lost. 

The expected and observed numbers are given by :-

Expected 
Observed 

Now 

AB 

TABLE 2 

Ah 

u(1-tJ) 
h 

aB 

(1-8) 
C 

CL 0C: Ua+b(2 +0) 0
(1 -0)6+<(Jd 

(3u+1)n 

.·. oL == _!! __ b+c +~ = 0 
o0 2 +0 I -0 0 

which is identical with (3) 

and oL==a+b_~ =o 
OU u 3u+1 

From (8) we obtain : 3u _ 3u+1 _ 1 

a +h - -n- - c+d · 

We also have from (3 bis) and (8) : 

ah 

tJ 
d 

. (7) 

( 3 bis) 

(8) 

. (9) 

100 
_ -Eo2L _ n { u + 1 +u + 1} _ n[2 +0(3u+1)] (w) 

002 3u+1 2 +0 1 -0 0 (3u+1)0(1 -0)(2 +0) 

a2L 
l9 = -E - = 0 . (II) 

u o03u 

I = -Ea2L = 3n . (12) 
uu au2 u(3u+1)2 

( 11) shows that the estimates ; and 0 are uncorrelated ; their variances 
are therefore I~' and l 98 '. By using the transformation 

u = tan 2a 
3 

we can change to a variable a whose sampling variance 1 /4n depends 
only on the sample number. 

Now consider the consistent product formula given by (2), i.e. 

ad T(2+T) 
be - (1 -T) 2 

The easiest way to calculate var Tis to write F = log t and then to 

use (6) to evaluate var F. For large samples we then have : 

var T = var F/(oTF)
2 

= 3u+i. 
9
(\-

9
)(;)~

9
) [2u+0(3+u)] 

O T=8 4llU I +2 
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Referring to (IO) we see that the efficiency E is given by 

E = 4u(1+20) 2 

[2 +0(3u+1 )][2u+0(3 +u)] 

It will be noticed that substituting 1/u for u leaves E unchanged. 
If we write x andy for the numerator and denominator in (15) 

. ( 16) 

Thus E is always less than unity except when 0 = o, or u = 1. 

Differentiating (15) with respect to 0 gives: 

oE 24u(u-1) 2(1+20)(0-1) 
80 - [2+8(3u+1)]2[2U+8(3+u)]2 

. ( 17) 

So that for a given value of u, not equal to unity, E is always decreasing 
in the range 0~8<1. 

Similarly: 
oE 
OU 

12(1 +20) 20(2+8)(1 -u2) 

[2 +0(3u+1)] 2[2u+8(3 +u)Jl' 
. ( 18) 

For a given value of 0, not equal to zero, E is always decreasing in 
the range 1 <u ~oo, or 1 > u ~o. A few values of E for different 
0 and u are given in the following table :-

TABLE 3 

u 

1 ·50 2·00 2·50 3·00 
1'00 0·67 0·50 0·40 o·33 

r 1·00 o ·g6 0 ·89 0·82 0·75 o·o Coopling} _ 
8 0·25 1·00 0·97 0 ·91 0·86 o·Bo 0·5 p ( or v' pp') 

Repulsion 
o·oo I 000 1'00 1·00 l·OO 1·00 o·o 

For matings in repulsion 0 increases from o to l as the recombination 
fraction increases from o to t· For matings in coupling the corres
ponding range of 0 is from I to t· Given u, the loss of efficiency is 
more serious in the coupling phase than in the repulsion phase, being 
worst for close linkage in coupling. But for values of u lying between 
½ and 2 the loss is never more than 1 1 per cent. ; and for values between 
i and 1 ½ does not exceed 4 per cent. 

Differential viability in both pairs of factors 

Now suppose that, in addition to the differential viability of A 
with respect to a, there is also a differential viability, v, of B phenotypes 
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relative to b. Assume the two effects are independent. The observed 
and expected numbers are:-

TABLE 4 

AB Ab aB ab 

Expected . 
Observed . 

• , tw(2+8) u(r-8) v(1-8) 8 Xn/{uv(2+8)+(u+v)(1-8)+8} 
, a b C d 

:. eL <x: u0Hrf+'0"(1 -0)H'(2+0)" 
[uv(2 +0) +(u+v)(1 -0) +0]n 

. ( 19) 

It will simplify the treatment if we write m1, m2, ms and m, for the 
four expected numbers ; also let us write 

D = uv(2+0)+(u+v)(1-0)+0 . (20) 

Differentiating ( 19) logarithmically gives : 

= a-m1 _ (b+c)-(m2 +ms) + d m, 
o0 2+0 1-0 0 

oL = (a+b)-(m 1 +m2) 
OU u 

ov V 

. (21) 

. (22) 

· (23) 

The maximum likelihood equations are given by equating each of 
(21), (22) and (23) to zero. After a little manipulation we obtain: 

_ _ nuv(2+0) . b _ _ nu(1 -0)} 
a - m1 - D , - m2 - D 

nv(1 -0) n0 · (24) 
c = ms = ; d = m, = -

D D 

From (24) we can recover the familiar product formula : 

ad 8(2+0) 
bc - (1 -0) 2 

which now yields the maximum likelihood estimate of 0. 
also obtain from (24) quadratics for u and v: 

3cdu2+2bcu-ab = o . 
and 3dbv2+2bcv-ac = o . 

.". ; = :d [ ( I +3 ~r- I] 
; = ;d [ ( I +3 ~r- I] 

Note that 
C .. 

V = -U 
b 

· (25) 

We can 

. (26) 

. (27) 

. (28) 

·. (29) 

. (30) 
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We must now derive the sampling variance of 0. As before we take 

F = log a;: and employ (6) to calculate the sampling variance of F. 

Then: 

var 0 = var F / (::r 
= 8

(
1 

(
9
)(

2tt) [uv(2+0) +(u+v)(1 -0) +0] 
4nuv 1 +2 

X [0(1-0)+(u+v)0(2+0)+uv(2+0)(1-0)] . (31) 

With the help of (24) we can write (31) a little more conveniently 
in the form: 

.. 02(2+0) 2 

var 0 = ,t.ad(i +
20

)2 [(a+d) +20{(b+c)-(a+d)}+n02
] • (32) 

I am grateful to Professor R. A. Fisher for pointing out that if we 
wish to judge the significance of departures of v, say, from unity, 
admitting linkage and one disturbed viability, then we can use the 
ordinary expression for the x2 which measures the agreement between 
the observed and the expected numbers. Of the three available 
degrees of freedom two are used up in the estimation of 0 and u. 
Referring to table 2 for the expectations, and using (9) we have :-

Expected 
Observed 

TABLE 5 

AB Ab aB ab 

·. I ½(a+b)(2+9) ¼(a+h)(r-9) (c+d)(r-9) (c+d)O 
Q b C d 

where 0 is given by (3 bis) or (4) . 

• •• 2= 3a2 + 3b2 + c2 +~-n. (33) 
X (a+b)(2+0) (a+b)(i-0) (c+d)(i-0) (c+d)0 

The following alternative forms are also due to Professor Fisher : 
It follows from (3 bis) that : 

0{a(1-0)-b(2+0)} = (2+0){c0-d(1-0)} = k, say. . (34) 

and 
a(1-0)-b(2+0) _c0-d(1-0) _ 0 

2 +0 - 0 - ' say. · 

Hence (33) can also be written 

2 _ k2 { I + I } _ 82 {2+0 + 0 ) 
X - 0(1-0)(2+0) (a+b)0 (c+d)(2+0) - 1-0 a+b c+df 

(36) 
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Summary 
In intercrosses the product formula yields an estimate of 0, which 

with undisturbed viability is fully efficient, and, with a single disturbed 
viability, results in the loss of a small amount of information for 
moderate disturbances. With two disturbed viabilities, however, the 
estimate is again fully efficient and is in fact then identical with the 
maximum likelihood solution. It may also be noted that the maximum 
likelihood solution for 0 is the same in both the undisturbed case and 
the case of a single disturbed viability. 
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Ill. A METHOD OF ALLOWING FOR DIFFERENTIAL VIABILITY IN 
ESTIMATING LINKAGE FROM BACKCROSS MATINGS IN 
COUPLING ONLY OR REPULSION ONLY 

NORMAN T. J. BAILEY 

A coupling mating of the type : AB/ah = ah/ah, gives rise to four 
kinds of offspring which are, phenotypically: AB, ah (parentals) and 
Ah, aB (recombinants). It is usual to group the two parental types 
and the two recombinant types to give a pair of observed numbers. 
Corresponding results may be obtained for matings in repulsion. 
It has been shown by Fisher (1935-47) that the joint use of coupling 
and repulsion data can be made to yield maximum likelihood estimates 
of (a) the linkage between the two loci and (h) the relative viability 
of the two groups AB, ah and Ah, aB. 

Often, however, results are available for matings in coupling only 
or repulsion only. We can still take into account the effects of 
differential viability by considering the numbers observed in all four 
classes : AB, ah, Ah and aB, on the assumption that the presence 
of each dominant gene modifies the expected values by a certain 
factor and that the two viability effects are independent. 

Let the recombination fraction be p ; the factors corresponding 
to the presence of A and B be u and v respectively ; and the sample 
number be n. Let the observed and expected numbers for matings 
in coupling be given by the following table :-

Expected 
Observed 

where 
and 

AB ab Ab aB 

nq nup 
b C 

P+q = I • 

a+h+c+d = n 

,wp -;-(uvq+q+up+vp) 
d 

For matings in repulsion we merely interchange p and q. 

(1) 
(2) 
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