TWO SEX-LINKAGES IN THE HOUSE MOUSE, WITH UNUSUAL RECOMBINATION VALUES

MARGARET E. WRIGHT

(Mrs M. E. WALLACE) Department of Genetics, University of Cambridge

Received 5.vi.47

IN 1945, in Line Thirteen of the series of inbred lines set up by Professor R. A. Fisher in the house mouse, *Mus musculus*, a disturbed segregation of shaker (sh_2) and sex was noticed. Data collected from three unrelated lines, Eight, Twelve and Eighteen, in which wavy (wv_2) and shaker (sh_2) were segregating, indicated linkage between these two factors and sex. G. D. Snell and L. W. Law (1939) had published data from which a crossover value of 25 per cent. between wavy and shaker had been obtained. An experiment was therefore set up, designed to investigate their linkage relations not only with each other but also with sex.

Appropriate genotypes were taken from Lines Twelve and Eighteen and a separate stock of wavy and shaker; crosses were made to produce each of the four kinds of males needed.

(i) Tricoupling	
(ii) wv_2 and sh_2 in coupling	$\sqrt[3]{\frac{wv_2 sh_2 Y}{+ + X}}$
(iii) sh_2 and sex in coupling	$\frac{d}{wv_2 + Y} = \frac{1}{2} 1$
(iv) wv_2 and sex in coupling	$\sqrt[3]{\frac{wv_2 + X}{+sh_2 Y}}$

In order that any causes other than linkage, likely to disturb the ratios obtained, should be distributed at random throughout the matings, mates were chosen during the following generations without regard to their consanguinity. Approximately a hundred mice were bred from each type of triple backcross (comprising twenty-four matings). The results are tabulated by phenotypes on page 350 (table 1).

In a form more convenient for considering linkage relations, these data may be tabulated as under, the columns representing respectively :

I. Parental types.

II. Recombinants, with crossovers interchanging X and Y.

ABLE	H
	ABLI

	Total	300 110 44 44	120		Total	32 19 32	001
	+	4 ന ന പ പ പ പ പ പ പ പ പ പ പ പ പ പ പ പ പ	26		+	0 00 H H	7
XX	sh2	ממממ ד =	11	XX	3 sh2	04100	22
$\frac{wv_2sh_2}{++\overline{\mathbf{X}}}$	30 wv2	н ; ; 4 ; н	9	$\delta \frac{wv_2 + X}{+ sh_2 Y}$	00 20 20	8 10 10	33
*0 ×	^z ys ^z am	0 4 7 : :	61	×	zhz uu	а н н	8
$\frac{2}{2} \frac{wv_2 sh_2}{wv_2 sh_2} \frac{X}{X}$	+	ыно:н	17	$\frac{Q}{2} \frac{wv_2 sh_2 X}{wv_2 sh_2 X}$	+	4.a	7
(ii) 2 <u>1</u>	99 vvz shz	αн : : : со	9	(iv) q	99 2 5h2	5	18
	2	а ; нана	9		am	a aa H	7
	wv 2sh2	Ω⊢α <u>6</u> . ∵.	39		wv 2sh2	നന വ ല - നനാന ല	6
	Mating	400 0 4 1/ 4 400 0 4 1/ 4	24 327 4 4		Mating	20 20 20	
	Total	35 89 80 80 80 80 80 80 80 80 80 80 80 80 80	106		Total	21 28 19 19	127
	+	- : : : 4 w - : -	10		+	. 4 .00 ; 60	6
A N	sh2	ын <u>;</u> ын <u>;</u> ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	5	46	S sh2	400+4	24
$\frac{wv_2sh_2}{+}\frac{X}{+}$	33 wv2	: : a : : a 4	10	$\frac{+sh_2 \mathbf{X}}{wv_2 + Y}$	53 wv2	507018	30
то Х	wv2sh2	4	16	*0 ×	wv2sh2	: 0. 0	11
wv ₂ sh ₂ X wv ₂ sh ₂ X	+	a 10 4 H a 10 a H 4	28	wv ₂ sh ₂ X wv ₂ sh ₂ X	+	പറംപ	12
0+	9 sh2		æ	0+	₽ sh2	⊣ගසසාග	61
(E)	t tuvz		16	(iii)	t dans	40 ⁻ 04 -	53
	zysz na	000 : : - 0 - 0 0	13		wv2sh2	4.60	01
	Mating	3888 3888 3888 3888 3888 3888 3888 388			Mating	6 21 33 33 33	

M. E. WRIGHT

- III. Recombinants, with crossovers interchanging wv_2 and its normal allelomorph.
- IV. Recombinants, with crossovers interchanging sh_2 and its normal allelomorph.

				Recombinants			
		Paternal types	I	II	111	IV	Totals
				x	wv2	sh ₂	
(i) Tricoupling		$\frac{\delta wv_2 sh_2 X}{+ + Y}$	23	44	18	21	106
(ii) wv_2 — sh_2 in coupling	•	$\frac{d wv_2 sh_2 Y}{+ + X}$	36	55	17	12	120
(iii) sh_2 —sex in coupling	•	$d + sh_2 X$ $wv_2 + Y$	39	46	19	23	127
(iv) wv_2 —sex in coupling	•	$\frac{d^2 wv_2 + X}{+ sh_2 Y}$	29	40	15	16	100
		Totals	127	185	69	72	453

TABLE 2 Observed (m+x)

It will be seen that this table involves the grouping of data concerning pairs of complementary genotypes from each kind of mating, these pairs being arranged as are the letters in a symmetrical 4×4 Latin Square. If there are any viability differences they may normally be expected to show most plainly between the members of these pairs. A χ^2 test on their approximation to I:I ratios will indicate if any of these pairs of genotypes are unequally viable (table 3).

TABLE	3	
-------	---	--

Pairs of complementary genotypes	Totals	X ²
$ \begin{array}{c} wv_2 sh_2 & \bigcirc & 61 \\ + & + & 3 & 52 \end{array} $	113	0.7168
$\begin{array}{c} + + & 9 & 64 \\ wv_2 sh_2 & 3 & 54 \end{array}$	118	o·8475
$ \begin{array}{c} + sh_2 & \bigcirc 51\\ wv_2 & + d & 58 \end{array} $	109	0.4495
$ \begin{array}{c} wv_2 + & \varphi & 51 \\ + & sh_2 & d & 62 \end{array} $	113	1.0708
	453	3·0846 ; n=4

The low χ^2 indicates that there are no obvious viability disturbances.

M. E. WRIGHT

A further and more comprehensive test, to discern whether viability or any other factors are disturbing the data, may be made by comparing the observed frequencies with those expected on the basis of the marginal totals in table 2 (table 4):

TABLE 4

(a)	Expected	(m)
-----	----------	-----

	I	II	III	IV	
(i) (ii) (iii) (iv)	29·7174 33·6424 35·6049 28·0353	43·2892 49·0066 51·8653 40·8389	16·1457 18·2781 19·3444 15·2318	16·8477 19·0729 20·1854 15·8940	106.0000 120.0000 127.0000 100.0000
-	127.0000	185.0000	69.0000	72.0000	453.0000

⁽b) (x^2/m)

	I	II	III	IV	Total χ^2
(i) (ii) (iii) (iv)	1·5184 0·1652 0·3237 0·0332	0·0117 0·7330 0·6633 0·0172	0·2130 0·0894 0·0061 0·0035	1 ·0234 2 ·6229 0 ·3925 0 ·0071	
	2.0405	1.4252	0.3120	4.0459	7.8236 (n=9)

The χ^2 is again insignificant for these nine degrees of freedom.

Finally, any inequality due to viability or other factors between the four pairs of genotypes in table 3, which might have disturbed the linkage relations, will become evident by comparison with the expected frequencies of these genotypes; these can be drawn from table 4a and appear below, together with a χ^2 test comparing them (table 5):

TABLE 5

Genotypes	Expected (m)	Observed (m+x)	x²/m
$wv_2sh_2 \begin{array}{l} & \varphi \varphi \text{ and } + + \delta \delta \\ & + + \varphi \varphi \text{ and } wv_2sh_2 \delta \delta \\ & + sh_2 \varphi \varphi \text{ and } wv_2 + \delta \delta \\ & wv_2 + \varphi \varphi \text{ and } + sh_2 \delta \delta \end{array}$	113·9624 112·3488 111·6624 115·0264	113 118 109 113	0·00813 0·28426 0·06348 0·03570
	453.0000	453	0·39157 (n=3)

The χ^2 is extremely low, and contributes very little to the total χ^2 of 7.8236 for nine degrees of freedom (in table 4b).

It appears, therefore, that viability and other disturbances are negligible.

It remains to test the hypothesis of independent segregation of sex with shaker and wavy. A χ^2 test on the approximation to a 1:1 ratio of the parental types of offspring against the recombinants involving an interchange of X and Υ is given below :

Parental types	Recombinants	χ ²	
127	185	10.782	(n=1)

The value of χ^2 for one degree of freedom is equivalent to a normal deviate of 3.284 standard deviation; the one in 1000 level of significance requires 3.241. The hypothesis of independence is therefore untenable.

It is reasonable, therefore, to conclude that the factors wavy and shaker are linked, not only with each other, but also with sex. The recombination values derived from table 2 are (table 6):

Linked loci	Recombinants	Total	Percentage recombination	Standard error
wv_2 and sh_2	69+72=141	453	31.06 per cent.	2·174 per cent.
wv_2 and sex	185+69=254	453	56.07 ,,	2.332 ,,
sh_2 and sex	185+72=257	453	56.73 "	2.328 ,,

TABLE 6

The recombination value between shaker and wavy is higher than that found by Snell and Law (1939). However, their estimate was based principally on female gametogenesis, and that given above is based on male gametogenesis; it is not impossible, therefore, that they should differ. For males, Snell and Law report 15 recombinants out of 56, an observation not incompatible with a recombination value exceeding 30 per cent.

The two main conclusions to be drawn from table 6 are : first, that the recombination values between shaker and sex and between wavy and sex are both significantly greater than 50 per cent.; and, secondly, that the two loci, wavy and shaker, recombination between which is as great as 31 per cent., are nevertheless similarly related as regards their values with sex.

Explanation of these phenomena is outside the scope of this paper, but it is submitted that while these conclusions appear mutually repugnant, the data given above supply very strong evidence for each of them. I am indebted to Professor R. A. Fisher for his guidance and encouragement and for the use of his stocks; and also to Mr T. C. Carter and Miss M. F. I. Speyer for their help in completing the experiment.

REFERENCE

SNELL, G. D., and LAW, L. W. 1939. A linkage between sh_2 and wv_2 in the house mouse. J. Hered. 30, 447.