Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations

Abstract

The retinal pigment epithelium (RPE) interacts closely with photoreceptors to maintain visual function. In degenerative diseases such as Stargardt disease and age-related macular degeneration, the leading cause of blindness in the developed world, RPE cell loss is followed by photoreceptor cell death. RPE cells can proliferate under certain conditions, suggesting an intrinsic regenerative potential, but so far this has not been utilised therapeutically. Here, we used E2F2 to induce RPE cell replication and thereby regeneration. In both young and old (2 and 18 month) wildtype mice, subretinal injection of non-integrating lentiviral vector expressing E2F2 resulted in 47% of examined RPE cells becoming BrdU positive. E2F2 induced an increase in RPE cell density of 17% compared with control vector-treated and 14% compared with untreated eyes. We also tested this approach in an inducible transgenic mouse model of RPE loss, generated through activation of diphtheria toxin-A gene. E2F2 expression resulted in a 10-fold increase in BrdU uptake and a 34% increase in central RPE cell density. Although in mice this localised rescue is insufficiently large to be demonstrable by electroretinography, a measure of massed retinal function, these results provide proof-of-concept for a strategy to induce in situ regeneration of RPE for the treatment of RPE degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gehrs KM, Anderson DH, Johnson LV, Hageman GS . Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Ann Med 2006; 38: 450–471.

    Article  Google Scholar 

  2. Klein R, Klein BE, Jensen SC, Meuer SM . The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997; 104: 7–21.

    Article  CAS  Google Scholar 

  3. Klein R, Klein BE, Linton KL . Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1992; 99: 933–943.

    Article  CAS  Google Scholar 

  4. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122: 564–572.

    Article  Google Scholar 

  5. Strauss O . The retinal pigment epithelium in visual function. Physiol Rev 2005; 85: 845–881.

    Article  CAS  Google Scholar 

  6. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP . Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003; 48: 257–293.

    Article  Google Scholar 

  7. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ . Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989; 30: 1691–1699.

    CAS  PubMed  Google Scholar 

  8. Marshall J . The ageing retina: physiology or pathology. Eye (Lond) 1987; 1 (Pt 2): 282–295.

    Article  Google Scholar 

  9. Kaldarar-Pedotti S . [Mitotic activity of the pigment epithelium during embryonic and postembryonic development]. Adv Ophthalmol 1979; 39: 37–58.

    CAS  PubMed  Google Scholar 

  10. Del Priore LV, Kuo YH, Tezel TH . Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 2002; 43: 3312–3318.

    PubMed  Google Scholar 

  11. Longbottom R, Fruttiger M, Douglas RH, Martinez-Barbera JP, Greenwood J, Moss SE . Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc Natl Acad Sci USA 2009; 106: 18728–18733.

    Article  CAS  Google Scholar 

  12. Machemer R, Steinhorst UH . Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 1993; 231: 635–641.

    Article  CAS  Google Scholar 

  13. Eandi CM, Giansanti F, Virgili G . Macular translocation for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2008; 8: CD006928.

    Google Scholar 

  14. MacLaren RE, Bird AC, Sathia PJ, Aylward GW . Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 2005; 112: 2081–2087.

    Article  Google Scholar 

  15. da CL, Chen FK, Ahmado A, Greenwood J, Coffey P . RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26: 598–635.

    Article  Google Scholar 

  16. Binder S, Stanzel BV, Krebs I, Glittenberg C . Transplantation of the RPE in AMD. Prog Retin Eye Res 2007; 26: 516–554.

    Article  Google Scholar 

  17. van Romunde SH, Polito A, Bertazzi L, Guerriero M, Pertile G . Long-term results of full macular translocation for choroidal neovascularization in age-related macular degeneration. Ophthalmology 2015; 122: 1366–1374.

    Article  Google Scholar 

  18. Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 2006; 124: 183–188.

    Article  Google Scholar 

  19. Joussen AM, Joeres S, Fawzy N, Heussen FM, Llacer H, van Meurs JC et al. Autologous translocation of the choroid and retinal pigment epithelium in patients with geographic atrophy. Ophthalmology 2007; 114: 551–560.

    Article  Google Scholar 

  20. MacLaren RE, Uppal GS, Balaggan KS, Tufail A, Munro PM, Milliken AB et al. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology 2007; 114: 561–570.

    Article  Google Scholar 

  21. van Meurs JC, ter AE, Croxen R, Hofland L, van Hagen PM . Comparison of the growth potential of retinal pigment epithelial cells obtained during vitrectomy in patients with age-related macular degeneration or complex retinal detachment. Graefes Arch Clin Exp Ophthalmol 2004; 242: 442–443.

    Article  Google Scholar 

  22. Gouras P, Flood MT, Kjedbye H, Bilek MK, Eggers H . Transplantation of cultured human retinal epithelium to Bruch's membrane of the owl monkey's eye. Curr Eye Res 1985; 4: 253–265.

    Article  CAS  Google Scholar 

  23. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015; 385: 509–516.

    Article  Google Scholar 

  24. Cyranoski D . Stem cells cruise to clinic. Nature 2013; 494: 413.

    Article  CAS  Google Scholar 

  25. Song P, Inagaki Y, Sugawara Y, Kokudo N . Perspectives on human clinical trials of therapies using iPS cells in Japan: reaching the forefront of stem-cell therapies. Biosci Trends 2013; 7: 157–158.

    PubMed  Google Scholar 

  26. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  CAS  Google Scholar 

  27. Nevins JR . The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10: 699–703.

    Article  CAS  Google Scholar 

  28. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001; 414: 457–462.

    Article  CAS  Google Scholar 

  29. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR . Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 1997; 94: 7245–7250.

    Article  CAS  Google Scholar 

  30. Albert DM, Tso MO, Rabson AS . In vitro growth of pure cultures of retinal pigment epithelium. Arch Ophthalmol 1972; 88: 63–69.

    Article  CAS  Google Scholar 

  31. Machemer R, Laqua H . Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 1975; 80: 1–23.

    Article  CAS  Google Scholar 

  32. Machemer R, van HD, Aaberg TM . Pigment epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 1978; 85: 181–191.

    Article  CAS  Google Scholar 

  33. Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA . The onset of pigment epithelial proliferation after retinal detachment. Invest Ophthalmol Vis Sci 1981; 21: 10–16.

    CAS  PubMed  Google Scholar 

  34. Ach T, Huisingh C, McGwin G Jr, Messinger JD, Zhang T, Bentley MJ et al. Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2014; 55: 4832–4841.

    Article  Google Scholar 

  35. Al-Hussaini H, Kam JH, Vugler A, Semo M, Jeffery G . Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo. Mol Vis 2008; 14: 1784–1791.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Georgiadis A, Tschernutter M, Bainbridge JW, Balaggan KS, Mowat F, West EL et al. The tight junction associated signalling proteins ZO-1 and ZONAB regulate retinal pigment epithelium homeostasis in mice. PLoS One 2010; 5: e15730.

    Article  CAS  Google Scholar 

  37. Tamiya S, Liu L, Kaplan HJ . Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest Ophthalmol Vis Sci 2010; 51: 2755–2763.

    Article  Google Scholar 

  38. Bracken AP, Ciro M, Cocito A, Helin K . E2F target genes: unraveling the biology. Trends Biochem Sci 2004; 29: 409–417.

    Article  CAS  Google Scholar 

  39. Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J et al. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle 2014; 13: 2889–2900.

    Article  CAS  Google Scholar 

  40. Galla M, Schambach A, Towers GJ, Baum C . Cellular restriction of retrovirus particle-mediated mRNA transfer. J Virol 2008; 82: 3069–3077.

    Article  CAS  Google Scholar 

  41. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  Google Scholar 

  42. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  Google Scholar 

  43. Bainbridge JWB, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 2001; 8: 1665–1668.

    Article  CAS  Google Scholar 

  44. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL, and also by Moorfields Eye Charity and RP Fighting Blindness. The authors gratefully acknowledge Anselm Kampik, Augenzentrum im Brienner Hof, Munich, Germany, for helpful discussions. The authors thank Nancy Joyce, Schepens Eye Research Institute, Harvard Medical School, Boston, USA, for providing the human E2F2 cDNA plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Ali.

Ethics declarations

Competing interests

UFOL is employee of F Hoffmann-La Roche Ltd. The remaning authors declare no conflict interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kampik, D., Basche, M., Luhmann, U. et al. In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. Gene Ther 24, 810–818 (2017). https://doi.org/10.1038/gt.2017.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.89

This article is cited by

Search

Quick links