Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy

Abstract

Nucleic acid-based drugs offer a potentially effective tool for treatment of a variety of diseases, including cancer, cardiovascular diseases, neurological disorders and infectious diseases. However, clinical applications are hindered by instability of RNA molecules in the circulation and lack of efficient vectors that can deliver RNAs to target tissues and into diseased target cells. Synthetic polymer and lipids as well as virus-based vectors are among the most widely explored vehicles for RNA delivery, but clinical progress has been limited as a result of issues related to toxicity, immunogenicity and low efficiency. Most recently, the discovery that extracellular vesicles (EVs) are endogenous RNA carriers, which may display better biocompatibility and higher delivery efficiency as compared with the synthetic systems, has provided a ray of hope in coping with the delivery dilemma, and EV-based gene therapy has already sparked general interest both in academia and industry. In this review, the current knowledge on EV biology and their role in cell–cell communication will be summarized. Promises of EVs as drug carriers and recent technologies on tailoring EVs’ biological attributes will be included, and preclinical studies in which EVs have shown promise for therapeutic RNA delivery will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sahin U, Karikó K, Türeci Ö . mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 2014; 13: 759–780.

    Article  CAS  PubMed  Google Scholar 

  2. Storz G, Altuvia S, Wassarman KM . An abundance of RNA regulators*. Annu Rev Biochem 2005; 74: 199–217.

    Article  CAS  PubMed  Google Scholar 

  3. Toledo-Arana A, Repoila F, Cossart P . Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 2007; 10: 182–188.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Y, Zhou G, Tian C, Jiang W, Jin L, Zhang C et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA 2016; 7: 758–771.

    Article  CAS  PubMed  Google Scholar 

  5. Lv H, Zhang S, Wang B, Cui S, Yan J . Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114: 100–109.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  7. Szebeni J . Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 2005; 216: 106–121.

    Article  CAS  PubMed  Google Scholar 

  8. Brown L, Wolf JM, Prados-Rosales R, Casadevall A . Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015; 13: 620–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raposo G, Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim JH, Lee J, Park J, Gho YS . Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol 2015; 40: 97–104.

    Article  CAS  PubMed  Google Scholar 

  11. Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PloS one 2013; 8: e84256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39: 133–144.

    Article  CAS  PubMed  Google Scholar 

  13. Tibbitt MW, Dahlman JE, Langer R . Emerging frontiers in drug delivery. J Am Chem Soc 2016; 138: 704–717.

    Article  CAS  PubMed  Google Scholar 

  14. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 18396.

    Article  CAS  Google Scholar 

  15. Li J, Lee Y, Johansson HJ, Mäger I, Vader P, Nordin JZ et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles 2015; 4: 26883.

    Article  PubMed  CAS  Google Scholar 

  16. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci 2013; 110: 7312–7317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaput N, Théry C . Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2011: 419–440.

  18. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M . Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28: 3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vlassov AV, Magdaleno S, Setterquist R, Conrad R . Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012; 1820: 940–948.

    Article  CAS  PubMed  Google Scholar 

  20. Colombo M, Raposo G, Théry C . Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255–289.

    Article  CAS  PubMed  Google Scholar 

  21. Buschow SI, Van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W . MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol 2010; 88: 851–856.

    Article  CAS  PubMed  Google Scholar 

  22. Lee EY, Choi DS, Kim KP, Gho YS . Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 2008; 27: 535–555.

    Article  CAS  PubMed  Google Scholar 

  23. Horstman AL, Kuehn MJ . Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 2000; 275: 12489–12496.

    Article  CAS  PubMed  Google Scholar 

  24. Kato S, Kowashi Y, Demuth DR . Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 2002; 32: 1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Kim S-H, Kim K-S, Lee S-R, Kim E, Kim M-S, Lee E-Y et al. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim Biophys Acta 2009; 1788: 2150–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kadurugamuwa JL, Beveridge TJ . Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 1996; 178: 2767–2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nolte EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, AC't Hoen P . Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012; 40: 9272–9285.

    Article  CAS  Google Scholar 

  28. Witwer KW, Buzas EI, Bemis LT, Bora A, Lässer C, Lötvall J et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 20360.

    Article  CAS  Google Scholar 

  29. Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS, Yusuf D et al. The extracellular RNA complement of Escherichia coli. Microbiol Open 2015; 4: 252–266.

    Article  CAS  Google Scholar 

  30. Cicero AL, Stahl PD, Raposo G . Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015; 35: 69–77.

    Article  PubMed  CAS  Google Scholar 

  31. Henne WM, Stenmark H, Emr SD . Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 2013; 5: a016766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kowal J, Tkach M, Théry C . Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116–125.

    Article  CAS  PubMed  Google Scholar 

  33. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319: 1244–1247.

    Article  CAS  PubMed  Google Scholar 

  34. Akers JC, Gonda D, Kim R, Carter BS, Chen CC . Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-oncol 2013; 113: 1–11.

    Article  Google Scholar 

  35. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19: 1875–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li B, Antonyak MA, Zhang J, Cerione RA . RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 2012; 31: 4740–4749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flaumenhaft R . Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006; 36: 182–187.

    Article  CAS  PubMed  Google Scholar 

  38. Kadurugamuwa JL, Beveridge TJ . Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 1995; 177: 3998–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maredia R, Devineni N, Lentz P, Dallo SF, Yu J, Guentzel N et al. Vesiculation from Pseudomonas aeruginosa under SOS. Sci World J 2012; 2012: 402919.

    Article  CAS  Google Scholar 

  40. Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I . Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J Bacteriol 1982; 151: 1523–1531.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thompson SS, Naidu Y, Pestka JJ . Ultrastructural localization of an extracellular protease in Pseudomonas fragi by using the peroxidase-antiperoxidase reaction. Appl Environ Microbiol 1985; 50: 1038–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Batagov AO, Kuznetsov VA, Kurochkin IV . Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics 2011; 12 (Suppl 3): S18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP et al. miR-1289 and ‘Zipcode’-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 2012; 1: e10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2013; 4: 2980.

    Article  PubMed  CAS  Google Scholar 

  45. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MA, Sadek P, Sie D et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 2014; 8: 1649–1658.

    Article  CAS  PubMed  Google Scholar 

  46. Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066.

    Article  PubMed  Google Scholar 

  47. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119: 756–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104: 3257–3266.

    Article  CAS  PubMed  Google Scholar 

  49. Escrevente C, Keller S, Altevogt P, Costa J . Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 2011; 11: 1.

    Article  CAS  Google Scholar 

  50. Doherty GJ, McMahon HT . Mechanisms of endocytosis. Ann Rev Biochem 2009; 78: 857–902.

    Article  CAS  PubMed  Google Scholar 

  51. Mulcahy LA, Pink RC, Carter DRF . Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3.

  52. Ellis TN, Kuehn MJ . Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chatterjee S, Chaudhuri K . Outer Membrane Vesicles of Bacteria. Springer Science & Business Media: Berlin, 2012.

    Book  Google Scholar 

  54. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847–856.

    Article  CAS  PubMed  Google Scholar 

  55. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    Article  CAS  PubMed  Google Scholar 

  56. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci 2010; 107: 6328–6333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G . Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 2013; 44: 11–19.

    Article  CAS  PubMed  Google Scholar 

  58. Ridder K, Sevko A, Heide J, Dams M, Rupp A-K, Macas J et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 2015; 4: e1008371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 2015; 161: 1046–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kulp A, Kuehn MJ . Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Ann Rev Microbiol 2010; 64: 163.

    Article  CAS  Google Scholar 

  61. Kaparakis-Liaskos M, Ferrero RL . Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 2015; 15: 375–387.

    Article  CAS  PubMed  Google Scholar 

  62. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 2014; 5: 5488.

    Article  CAS  PubMed  Google Scholar 

  63. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016; 19: 32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ . Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12: 347–357.

    Article  CAS  Google Scholar 

  65. Schwechheimer C, Kuehn MJ . Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13: 605–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tominaga N, Yoshioka Y, Ochiya T . A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev 2015; 95: 50–55.

    Article  CAS  PubMed  Google Scholar 

  67. Didiot M-C, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K et al. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol Ther 2016; 24: 1836–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bryniarski K, Ptak W, Jayakumar A, Püllmann K, Caplan MJ, Chairoungdua A et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol 2013; 132: 170–181. e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hood JL, Scott MJ, Wickline SA . Maximizing exosome colloidal stability following electroporation. Anal Biochem 2014; 448: 41–49.

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ . Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29: 341–345.

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 2015; 5: 17543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wahlgren J, Karlson TDL, Brisslert M, Sani FV, Telemo E, Sunnerhagen P et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012; 40: e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gujrati V, Kim S, Kim S-H, Min JJ, Choy HE, Kim SC et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014; 8: 1525–1537.

    Article  CAS  PubMed  Google Scholar 

  74. Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 2013; 172: 229–238.

    Article  CAS  PubMed  Google Scholar 

  75. Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 2016; 9: 315–324.

    Article  CAS  PubMed  Google Scholar 

  76. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 2015; 207: 18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Janas T, Janas MM, Sapoń K, Janas T . Mechanisms of RNA loading into exosomes. FEBS Lett 2015; 589: 1391–1398.

    Article  CAS  PubMed  Google Scholar 

  78. Vader P, Mol EA, Pasterkamp G, Schiffelers RM . Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106: 148–156.

    Article  CAS  PubMed  Google Scholar 

  79. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T . Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285: 17442–17452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV . Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013; 11: 88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pan S, Yang X, Jia Y, Li R, Zhao R . Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-γ expression. J Cell Physiol 2014; 229: 631–639.

    Article  CAS  PubMed  Google Scholar 

  82. Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011; 19: 395–399.

    Article  CAS  PubMed  Google Scholar 

  83. Rechavi O, Erlich Y, Amram H, Flomenblit L, Karginov FV, Goldstein I et al. Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes Dev 2009; 23: 1971–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mäger I et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015; 4: 26316.

    Article  PubMed  Google Scholar 

  85. Kumar P, Wu H, McBride JL, Jung K-E, Kim MH, Davidson BL et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448: 39–43.

    Article  CAS  PubMed  Google Scholar 

  86. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35: 2383–2390.

    Article  CAS  PubMed  Google Scholar 

  87. Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21: 185–191.

    Article  CAS  PubMed  Google Scholar 

  88. Ohno S-i, Drummen GP, Kuroda M . Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. Int J Mol Sci 2016; 17: 172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM . Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles 2016; 5: 31053.

    Article  PubMed  CAS  Google Scholar 

  90. Somerville JE, Cassiano L, Darveau RP . Escherichia coli msbB gene as a virulence factor and a therapeutic target. Infect Immun 1999; 67: 6583–6590.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Somerville JE Jr, Cassiano L, Bainbridge B, Cunningham MD, Darveau RP . A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J Clin Invest 1996; 97: 359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim J-Y, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D et al. Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol 2008; 380: 51–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G . Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol 2016; 4: 83.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ . MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 2016; 7: 231.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kordelas L, Rebmann V, Ludwig A, Radtke S, Ruesing J, Doeppner T et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28: 970.

    Article  CAS  PubMed  Google Scholar 

  96. Yin W, Ouyang S, Li Y, Xiao B, Yang H . Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation 2013; 36: 232–240.

    Article  CAS  PubMed  Google Scholar 

  97. Cooper JM, Wiklander P, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Move Disord 2014; 29: 1476–1485.

    Article  CAS  Google Scholar 

  98. Lee HK, Finniss S, Cazacu S, Xiang C, Brodie C . Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression. Stem Cells Dev 2014; 23: 2851–2861.

    Article  CAS  PubMed  Google Scholar 

  99. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 2013; 21: 101–108.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang Y, Li L, Yu J, Zhu D, Zhang Y, Li X et al. Microvesicle-mediated delivery of transforming growth factor β1 siRNA for the suppression of tumor growth in mice. Biomaterials 2014; 35: 4390–4400.

    Article  CAS  PubMed  Google Scholar 

  101. Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 2011; 61: 1330–1339.

    Article  PubMed  CAS  Google Scholar 

  102. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014; 41: 89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bellingham SA, Coleman BM, Hill AF . Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 2012; 40: 10937–10949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van Balkom BW, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC . Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles 2015; 4: 26760.

    Article  PubMed  CAS  Google Scholar 

  105. Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV . Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. Peer J 2013; 1: e201.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Tosar JP, Gámbaro F, Sanguinetti J, Bonilla B, Witwer KW, Cayota A . Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res 2015; 43: 5601–5616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LJ acknowledges financial support from the China Scholarship Council (CSC). PV is supported by a VENI Fellowship (# 13667) from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Schiffelers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Vader, P. & Schiffelers, R. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther 24, 157–166 (2017). https://doi.org/10.1038/gt.2017.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.8

This article is cited by

Search

Quick links