Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice

Abstract

Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Lee SJ, McPherron AC . Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 2001; 98: 9306–9311.

    CAS  Article  Google Scholar 

  2. 2

    Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y et al. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J 2007; 22: 477–487.

    Article  Google Scholar 

  3. 3

    Tsuchida K, Sunada Y, Noji S, Murakami T, Uezumi A, Nakatani M . Inhibitors of the TGF-beta superfamily and their clinical applications. Mini Rev Med Chem 2006; 6: 1255–1261.

    CAS  Article  Google Scholar 

  4. 4

    Zanotti S, Saredi S, Ruggieri A, Fabbri M, Blasevich F, Romaggi S et al. Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes. Matrix Biol 2007; 26: 615–624.

    CAS  Article  Google Scholar 

  5. 5

    Ohsawa Y, Hagiwara H, Nakatani M, Yasue A, Moriyama K, Murakami T et al. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 2006; 116: 2924–2934.

    CAS  Article  Google Scholar 

  6. 6

    Tsuchida K . The role of myostatin and bone morphogenetic proteins in muscular disorders. Expert Opin Biol Ther 2006; 6: 147–154.

    CAS  Article  Google Scholar 

  7. 7

    Jespersen J, Kjaer M, Schjerling P . The possible role of myostatin in skeletal muscle atrophy and cachexia. Scand J Med Sci Sports 2006; 16: 74–82.

    CAS  Article  Google Scholar 

  8. 8

    McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 2006; 209: 501–514.

    CAS  Article  Google Scholar 

  9. 9

    Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003; 300: 965–971.

    CAS  Article  Google Scholar 

  10. 10

    Zhao B, Wall RJ, Yang J . Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005; 337: 248–255.

    CAS  Article  Google Scholar 

  11. 11

    McPherron AC, Lee SJ . Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002; 109: 595–601.

    CAS  Article  Google Scholar 

  12. 12

    Lu YC, Sternini C, Rozengurt E, Zhukova E . Release of transgenic human insulin from gastric g cells: a novel approach for the amelioration of diabetes. Endocrinology 2005; 146: 2610–2619.

    CAS  Article  Google Scholar 

  13. 13

    Kumar M, Hunag Y, Glinka Y, Prud'homme GJ, Wang Q . Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2007; 14: 162–172.

    CAS  Article  Google Scholar 

  14. 14

    Park JH, Lee M, Kim SW . Non-viral adiponectin gene therapy into obese type 2 diabetic mice ameliorates insulin resistance. J Control Release 2006; 114: 118–125.

    CAS  Article  Google Scholar 

  15. 15

    Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ et al. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem 1992; 267: 6278–6285.

    CAS  PubMed  Google Scholar 

  16. 16

    Rahman SM, Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Ntambi JM . Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci USA 2003; 100: 11110–11115.

    CAS  Article  Google Scholar 

  17. 17

    Miura T, Suzuki W, Ishihara E, Arai I, Ishida H, Seino Y et al. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur J Endocrinol 2001; 145: 785–790.

    CAS  Article  Google Scholar 

  18. 18

    Galuska D, Ryder J, Kawano Y, Charron MJ, Zierath JR . Insulin signaling and glucose transport in insulin resistant skeletal muscle. Special reference to GLUT4 transgenic and GLUT4 knockout mice. Adv Exp Med Biol 1998; 441: 73–85.

    CAS  Article  Google Scholar 

  19. 19

    Holman GD, Kasuga M . From receptor to transporter: insulin signalling to glucose transport. Diabetologia 1997; 40: 991–1003.

    CAS  Article  Google Scholar 

  20. 20

    Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ . Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001; 276: 38349–38352.

    CAS  Article  Google Scholar 

  21. 21

    Hajduch E, Litherland GJ, Hundal HS . Protein kinase B (PKB/Akt)—a key regulator of glucose transport? FEBS Lett 2001; 492: 199–203.

    CAS  Article  Google Scholar 

  22. 22

    Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN et al. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 2003; 100: 15842–15846.

    CAS  Article  Google Scholar 

  23. 23

    Bartoli M, Poupiot J, Vulin A, Fougerousse F, Arandel L, Daniele N et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Therapy 2007; 14: 733–740.

    CAS  Article  Google Scholar 

  24. 24

    Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM et al. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 2002; 277: 40735–40741.

    CAS  Article  Google Scholar 

  25. 25

    Weir AN, Nesbitt A, Chapman AP, Popplewell AG, Antoniw P, Lawson AD . Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 2002; 30: 512–516.

    CAS  Article  Google Scholar 

  26. 26

    Feldman BJ, Streeper RS, Farese RV Jr, Yamamoto KR . Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci USA 2006; 103: 15675–15680.

    CAS  Article  Google Scholar 

  27. 27

    Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ . Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 2001; 60: 351–361.

    CAS  Article  Google Scholar 

  28. 28

    Herberg L, Coleman DL . Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 1977; 26: 59–99.

    CAS  Article  Google Scholar 

  29. 29

    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–495.

    CAS  Article  Google Scholar 

  30. 30

    Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M . Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 2006; 209: 866–873.

    CAS  Article  Google Scholar 

  31. 31

    Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA . Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol Endocrinol Metab 2007; 292: E985–E991.

    CAS  Article  Google Scholar 

  32. 32

    Baron AD, Brechtel G, Wallace P, Edelman SV . Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 1988; 255 (6 Pt 1): E769–E774.

    CAS  PubMed  Google Scholar 

  33. 33

    Hunt DG, Ivy JL . Epinephrine inhibits insulin-stimulated muscle glucose transport. J Appl Physiol 2002; 93: 1638–1643.

    CAS  Article  Google Scholar 

  34. 34

    Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG Jr. et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 2000; 49: 284–292.

    CAS  Article  Google Scholar 

  35. 35

    Virkamaki A, Ueki K, Kahn CR . Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999; 103: 931–943.

    CAS  Article  Google Scholar 

  36. 36

    Alessi DR . Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem Soc Trans 2001; 29 (Pt 2): 1–14.

    CAS  Article  Google Scholar 

  37. 37

    Cohen P, Alessi DR, Cross DA . PDK1, one of the missing links in insulin signal transduction? FEBS Lett 1997; 410: 3–10.

    CAS  Article  Google Scholar 

  38. 38

    Gosmanov AR, Umpierrez GE, Karabell AH, Cuervo R, Thomason DB . Impaired expression and insulin-stimulated phosphorylation of Akt-2 in muscle of obese patients with atypical diabetes. Am J Physiol Endocrinol Metab 2004; 287: E8–E15.

    CAS  Article  Google Scholar 

  39. 39

    Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM . Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 2006; 84: 1–14.

    Article  Google Scholar 

  40. 40

    Kootstra NA, Matsumura R, Verma IM . Efficient production of human FVIII in hemophilic mice using lentiviral vectors. Mol Ther 2003; 7 (5 Pt 1): 623–631.

    CAS  Article  Google Scholar 

  41. 41

    Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Johnson PR, Hirsch J . Cellularity of adipose depots in six strains of genetically obese mice. J Lipid Res 1972; 13: 2–11.

    CAS  PubMed  Google Scholar 

  43. 43

    Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res 2007; 67: 6665–6674.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation Committee of China (Grant no. 30900694) and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant no. JYBHG201005).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to J G Jiang or D W Wang or X Xiao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Shen, G., Li, J. et al. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice. Gene Ther 24, 167–175 (2017). https://doi.org/10.1038/gt.2016.85

Download citation

Further reading

Search