Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-15/sIL-15Rα gene transfer induces weight loss and improves glucose homeostasis in obese mice

Abstract

Obesity and its associated metabolic problems are a major public health issue. The objective of the current study is to investigate the therapeutic effects of interleukin 15/soluble interleukin 15 receptor-α (IL-15/sIL-15Rα) on high-fat diet-induced obesity and obesity-associated metabolic disorders. We demonstrate that the multiple hydrodynamic delivery of 2 μg IL-15/sIL-15Rα plasmid results in numerous beneficial effects, including a reduction of body weight and fat mass, an alleviation of fatty liver, an improvement in glucose homeostasis and insulin sensitivity in obese mice. These effects are accompanied by a suppressed expression of genes involved in lipid accumulation and lipogenesis, including Pparγ, Cd36, Fabp4, Mgat1, Scd-1 and Fas, and elevated mRNA levels of genes involved in adaptive thermogenesis and fatty acid β-oxidation, such as Ucp1, Ucp3, Pgc-1α, Pgc-1β, Pparα, Pparδ, Cpt1-α and Cpt1-β in obese animals. These results suggest that the overexpression of the Il-15/sIl-15Rα gene is an effective approach in treating diet-induced obesity and its associated metabolic complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hill JO, Wyatt HR, Reed GW, Peters JC . Obesity and the environment: where do we go from here? Science 2003; 299: 853–855.

    Article  CAS  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311: 806–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Egan B, Zierath JR . Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013; 17: 162–184.

    Article  CAS  PubMed  Google Scholar 

  4. Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol (1985) 2003; 94: 1917–1925.

    Article  CAS  Google Scholar 

  5. Pedersen BK, Febbraio MA . Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8: 457–465.

    Article  CAS  PubMed  Google Scholar 

  6. Quinn LS, Anderson BG . Interleukin-15, IL-15 receptor-alpha, and obesity: concordance of laboratory animal and human genetic studies. J Obes 2011 doi:10.1155/2011/456347.

  7. Ma Y, Gao M, Sun H, Liu D . Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Biochim Biophys Acta 2015; 1852: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  8. Gao M, Ma Y, Cui R, Liu D . Hydrodynamic delivery of FGF21 gene alleviates obesity and fatty liver in mice fed a high-fat diet. J Controlled Release 2014; 185: 1–11.

    Article  CAS  Google Scholar 

  9. Gao M, Zhang C, Ma Y, Bu L, Yan L, Liu D . Hydrodynamic delivery of mIL10 gene protects mice from high-fat diet-induced obesity and glucose intolerance. Mol Ther 2013; 21: 1852–1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V et al. Cloning of a T-cell growth-factor that interacts with the beta-chain of the interleukin-2 receptor. Science 1994; 264: 965–968.

    Article  CAS  PubMed  Google Scholar 

  11. Tagaya Y, Bamford RN, DeFilippis AP, Waldmann TA . IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 1996; 4: 329–336.

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen AR, Hojman P, Erikstrup C, Fischer CP, Plomgaard P, Mounier R et al. Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab 2008; 93: 4486–4493.

    Article  CAS  PubMed  Google Scholar 

  13. Barra NG, Reid S, MacKenzie R, Werstuck G, Trigatti BL, Richards C et al. Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring) 2010; 18: 1601–1607.

    Article  CAS  Google Scholar 

  14. Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argiles JM . Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 2009; 296: E191–E202.

    Article  CAS  PubMed  Google Scholar 

  15. Quinn LS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ . Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 2005; 29: 449–457.

    Article  CAS  PubMed  Google Scholar 

  16. Barra NG, Palanivel R, Denou E, Chew MV, Gillgrass A, Walker TD et al. Interleukin-15 modulates adipose tissue by altering mitochondrial mass and activity. PLoS One 2014; 9: e114799.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ajuwon KM, Spurlock ME . Direct regulation of lipolysis by interleukin-15 in primary pig adipocytes. Am J Physiol Regul Integr Comp Physiol 2004; 287: R608–R611.

    Article  CAS  PubMed  Google Scholar 

  18. Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C et al. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 2008; 283: 4189–4199.

    Article  CAS  PubMed  Google Scholar 

  19. Pedersen BK, Steensberg A, Schjerling P . Muscle-derived interleukin-6: possible biological effects. J Physiol 2001; 536 (Pt 2): 329–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waldmann TA, Tagaya Y . The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 1999; 17: 19–49.

    Article  CAS  PubMed  Google Scholar 

  21. Budagian V, Bulanova E, Paus R, Bulfone-Paus S . IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 2006; 17: 259–280.

    Article  CAS  PubMed  Google Scholar 

  22. Sun H, Liu D . Hydrodynamic delivery of interleukin 15 gene promotes resistance to high fat diet-induced obesity, fatty liver and improves glucose homeostasis. Gene Therapy 2015; 22: 341–347.

    Article  CAS  PubMed  Google Scholar 

  23. Barra NG, Chew MV, Holloway AC, Ashkar AA . Interleukin-15 treatment improves glucose homeostasis and insulin sensitivity in obese mice. Diabetes Obes Metab 2012; 14: 190–193.

    Article  CAS  PubMed  Google Scholar 

  24. Alvarez B, Carbo N, Lopez-Soriano J, Drivdahl RH, Busquets S, Lopez-Soriano FJ et al. Effects of interleukin-15 (IL-15) on adipose tissue mass in rodent obesity models: evidence for direct IL-15 action on adipose tissue. Biochim Biophys Acta 2002; 1570: 33–37.

    Article  CAS  PubMed  Google Scholar 

  25. Sumithran P, Proietto J . The defence of body weight: a physiological basis for weight regain after weight loss. Clin Sci 2013; 124: 231–241.

    Article  Google Scholar 

  26. Barra NG, Chew MV, Reid S, Ashkar AA . Interleukin-15 treatment induces weight loss independent of lymphocytes. PLoS One 2012; 7: e39553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohl HW . Duration and intensity of exercise in weight loss among overweight women. Clin J Sport Med 2009; 19: 151–152.

    Article  PubMed  Google Scholar 

  28. Jakicic JM, Marcus BH, Gallagher KI, Napolitano M, Lang W . Effect of exercise duration and intensity on weight loss in overweight, sedentary women - a randomized trial. JAMA 2003; 290: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  29. Chambliss HO . Exercise duration and intensity in a weight-loss program. Clin J Sport Med 2005; 15: 113–115.

    Article  PubMed  Google Scholar 

  30. MacLean PS, Higgins JA, Johnson GC, Fleming-Elder BK, Peters JC, Hill JO . Metabolic adjustments with the development, treatment, and recurrence of obesity in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2004; 287: R288–R297.

    Article  CAS  PubMed  Google Scholar 

  31. Carbo N, Lopez-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 2001; 1526: 17–24.

    Article  CAS  PubMed  Google Scholar 

  32. Almendro V, Fuster G, Busquets S, Ametller E, Figueras M, Argiles JM et al. Effects of IL-15 on rat brown adipose tissue: uncoupling proteins and PPARs. Obesity (Silver Spring) 2008; 16: 285–289.

    Article  CAS  Google Scholar 

  33. Lopez-Soriano J, Carbo N, Almendro V, Figueras M, Ribas V, Busquets S et al. Rat liver lipogenesis is modulated by interleukin-15. Int J Mol Med 2004; 13: 817–819.

    CAS  PubMed  Google Scholar 

  34. Ferre P . The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 2004; 53 (Suppl 1): S43–S50.

    Article  CAS  PubMed  Google Scholar 

  35. Berger JP, Akiyama TE, Meinke PT . PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005; 26: 244–251.

    Article  CAS  PubMed  Google Scholar 

  36. Grimaldi PA . Regulatory role of peroxisome proliferator-activated receptor delta (PPAR delta) in muscle metabolism: a new target for metabolic syndrome treatment? Biochimie 2005; 87: 5–8.

    Article  CAS  PubMed  Google Scholar 

  37. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 2003; 278: 498–505.

    Article  CAS  PubMed  Google Scholar 

  38. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003; 278: 34268–34276.

    Article  CAS  PubMed  Google Scholar 

  39. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003; 111: 737–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Almendro V, Busquets S, Ametller E, Carbo N, Figueras M, Fuster G et al. Effects of interleukin-15 on lipid oxidation: disposal of an oral [(14)C]-triolein load. Biochim Biophys Acta 2006; 1761: 37–42.

    Article  CAS  PubMed  Google Scholar 

  41. Busquets S, Figueras M, Almendro V, Lopez-Soriano FJ, Argiles JM . Interleukin-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. Biochim Biophys Acta 2006; 1760: 1613–1617.

    Article  CAS  PubMed  Google Scholar 

  42. et al. Efficient systemic expression of bioactive IL-15 in mice upon delivery of optimized DNA expression plasmids. DNA Cell Biol 2007; 26: 827–840.

  43. Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN . Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 1997; 71: 4892–4903.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosati M, von Gegerfelt A, Roth P, Alicea C, Valentin A, Robert-Guroff M et al. DNA vaccines expressing different forms of simian immunodeficiency virus antigens decrease viremia upon SIVmac251 challenge. J Virol 2005; 79: 8480–8492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Barbara K Felber (NCI) for generously providing us with AG209 DP muIL-15sRα+IL-15 plasmid and Mrs Francisca Burnley for proofreading the manuscript. The study was supported in part by grants from NIH (RO1 EB007357 and RO1 HL098295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Ma, Y., Gao, M. et al. IL-15/sIL-15Rα gene transfer induces weight loss and improves glucose homeostasis in obese mice. Gene Ther 23, 349–356 (2016). https://doi.org/10.1038/gt.2016.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.4

This article is cited by

Search

Quick links