Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a

Abstract

Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite the extensive research, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. Loss of GABAergic tone may have an important role in the neuropathic pain state. Glutamic acid decarboxylase 67 (GAD67) is one of the isoforms that catalyze GABA synthesis. Here, we used recombinant herpes simplex virus (HSV-1) vectors that encode gad1 gene to evaluate the therapeutic potential of GAD67 in peripheral HIV gp120-induced neuropathic pain in rats. We found that (1) subcutaneous inoculation of the HSV vectors expressing GAD67 attenuated mechanical allodynia in the model of HIV gp120-induced neuropathic pain, (2) the anti-allodynic effect of GAD67 was reduced by GABA-A and-B receptors antagonists, (3) HSV vectors expressing GAD67 reversed the lowered GABA-IR expression and (4) the HSV vectors expressing GAD67 suppressed the upregulated mitochondrial superoxide and Wnt5a in the spinal dorsal horn. Taken together, our studies support the concept that recovering GABAergic tone by the HSV vectors may reverse HIV-associated neuropathic pain through suppressing mitochondrial superoxide and Wnt5a. Our studies provide validation of HSV-mediated GAD67 gene therapy in the treatment of HIV-related neuropathic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Parker R, Stein DJ, Jelsma J . Pain in people living with HIV/AIDS: a systematic review. J Int AIDS Soc 2014; 17: 18719.

    PubMed Central  PubMed  Google Scholar 

  2. Smith HS . Treatment considerations in painful HIV-related neuropathy. Pain Physician 2011; 14: E505–E524.

    PubMed  Google Scholar 

  3. Lin Q, Peng YB, Willis WD . Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol 1996; 75: 109–123.

    CAS  PubMed  Google Scholar 

  4. Malcangio M, Bowery NG . GABA and its receptors in the spinal cord. Trends Pharmacol Sci 1996; 17: 457–462.

    CAS  PubMed  Google Scholar 

  5. Yaksh TL . Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989; 37: 111–123.

    CAS  PubMed  Google Scholar 

  6. Sivilotti L, Woolf CJ . The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994; 72: 169–179.

    CAS  PubMed  Google Scholar 

  7. Malan TP, Mata HP, Porreca F . Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002; 96: 1161–1167.

    CAS  PubMed  Google Scholar 

  8. Hwang JH, Yaksh TL . The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997; 70: 15–22.

    CAS  PubMed  Google Scholar 

  9. Koutsilieri E, Sopper S, Heinemann T, Scheller C, Lan J, Stahl-Hennig C et al. Involvement of microglia in cerebrospinal fluid glutamate increase in SIV-infected rhesus monkeys (Macaca mulatta). AIDS Res Hum Retroviruses 1999; 15: 471–477.

    CAS  PubMed  Google Scholar 

  10. Chandra J, Samali A, Orrenius S . Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 2000; 29: 323–333.

    CAS  PubMed  Google Scholar 

  11. Kim HY, Chung JM, Chung K . Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett 2008; 447: 87–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Fridovich I . Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97–112.

    CAS  PubMed  Google Scholar 

  13. Lee I, Kim HK, Kim JH, Chung K, Chung JM . The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain 2007; 133: 9–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D et al. Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 2001; 24: 411–416.

    CAS  PubMed  Google Scholar 

  15. Kanda H, Liu S, Iida T, Yi H, Huang W, Levitt R et al. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by perineural HIV gp120 in rats. Anesth Analg 2015; 122: 264–272.

    Google Scholar 

  16. Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M et al. Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 2010; 30: 8411–8420.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li B, Shi Y, Shu J, Gao J, Wu P, Tang SJ . Wingless-type mammary tumor virus integration site family, member 5 A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2013; 288: 13610–13619.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Itokazu T, Hayano Y, Takahashi R, Yamashita T . Involvement of Wnt/beta-catenin signaling in the development of neuropathic pain. Neurosci Res 2014; 79: 34–40.

    CAS  PubMed  Google Scholar 

  19. Yuan S, Shi Y, Tang SJ . Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 2012; 7: 904–913.

    PubMed  Google Scholar 

  20. Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ . WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 2013; 123: 2268–2286.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Yuan SB, Ji G, Li B, Andersson T, Neugebauer V, Tang SJ . A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain. Pain 2015; 156: 1311–1319.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Glorioso JC, Fink DJ . Herpes vector-mediated gene transfer in the treatment of chronic pain. Mol Ther 2009; 17: 13–18.

    CAS  PubMed  Google Scholar 

  23. Wilson SP, Yeomans DC, Bender MA, Lu Y, Goins WF, Glorioso JC . Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc Natl Acad Sci USA 1999; 96: 3211–3216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braz J, Beaufour C, Coutaux A, Epstein AL, Cesselin F, Hamon M et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001; 21: 7881–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Nowicki MO, Wang X, Arnold WD, Fernandez SA, Mo X et al. Comparative effectiveness of antinociceptive gene therapies in animal models of diabetic neuropathic pain. Gene Ther 2013; 20: 742–750.

    CAS  PubMed  Google Scholar 

  26. Hao S, Mata M, Goins W, Glorioso JC, Fink DJ . Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain 2003; 102: 135–142.

    CAS  PubMed  Google Scholar 

  27. Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM et al. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 2012; 7: e46178.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Herzberg U, Sagen J . Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol 2001; 116: 29–39.

    CAS  PubMed  Google Scholar 

  29. Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ et al. Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 2011; 7: 40.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Wallace VC, Blackbeard J, Segerdahl AR, Hasnie F, Pheby T, McMahon SB et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 2007; 130 (Pt 10): 2688–2702.

    PubMed  Google Scholar 

  31. Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 2003; 24: 818–830.

    CAS  PubMed  Google Scholar 

  32. Chattopadhyay M, Mata M, Fink DJ . Vector-mediated release of GABA attenuates pain-related behaviors and reduces Na(V)1.7 in DRG neurons. Eur J Pain 2011; 15: 913–920.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Liu J, Wolfe D, Hao S, Huang S, Glorioso JC, Mata M et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 2004; 10: 57–66.

    CAS  PubMed  Google Scholar 

  34. Hao S, Wolfe D, Glorioso JC, Mata M, Fink DJ . Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain 2009; 13: 380–386.

    CAS  PubMed  Google Scholar 

  35. Yaksh TL, Rudy TA . Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192: 1357–1358.

    CAS  PubMed  Google Scholar 

  36. Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM . Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 2013; 154: 2469–2476.

    CAS  PubMed  Google Scholar 

  37. Basbaum AI, Bautista DM, Scherrer G, Julius D . Cellular and molecular mechanisms of pain. Cell 2009; 139: 267–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 2011; 152: 844–852.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim HY, Lee KY, Lu Y, Wang J, Cui L, Kim SJ et al. Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain. J Neurosci 2011; 31: 12982–12991.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Shi Y, Shu J, Gelman BB, Lisinicchia JG, Tang SJ . Wnt signaling in the pathogenesis of human HIV-associated pain syndromes. J Neuroimmune Pharmacol 2013; 8: 956–964.

    PubMed Central  PubMed  Google Scholar 

  41. Hao S, Mata M, Wolfe D, Huang S, Glorioso JC, Fink DJ . Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol 2005; 57: 914–918.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH . Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005; 118: 289–305.

    CAS  PubMed  Google Scholar 

  43. Percie du Sert N, Rice AS . Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 2014; 171: 2951–2963.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kaul M, Garden GA, Lipton SA . Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410: 988–994.

    CAS  PubMed  Google Scholar 

  45. Cornblath DR, Hoke A . Recent advances in HIV neuropathy. Curr Opin Neurol 2006; 19: 446–450.

    PubMed  Google Scholar 

  46. Hao S . The molecular and pharmacological mechanisms of HIV-related neuropathic pain. Curr Neuropharmacol 2013; 11: 499–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Verma S, Estanislao L, Simpson D . HIV-associated neuropathic pain: epidemiology, pathophysiology and management. CNS Drugs 2005; 19: 325–334.

    PubMed  Google Scholar 

  48. Wallace VC, Blackbeard J, Pheby T, Segerdahl AR, Davies M, Hasnie F et al. Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain 2007; 133: 47–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Sorkin LS, Puig S, Jones DL . Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain 1998; 77: 181–190.

    CAS  PubMed  Google Scholar 

  50. Castro-Lopes JM, Tavares I, Coimbra A . GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 1993; 620: 287–291.

    CAS  PubMed  Google Scholar 

  51. Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K . Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 1998; 16: 57–72.

    CAS  PubMed  Google Scholar 

  52. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ . Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002; 22: 6724–6731.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolfe D, Mata M, Fink DJ . Targeted drug delivery to the peripheral nervous system using gene therapy. Neurosci Lett 2012; 527: 85–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA et al. Gene transfer of glutamic acid decarboxylase 67 by herpes simplex virus vectors suppresses neuropathic pain induced by human immunodeficiency virus gp120 combined with ddC in rats. Anesth Analg 2015; 120: 1394–1404.

    CAS  PubMed  Google Scholar 

  55. Pinal CS, Tobin AJ . Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998; 5: 109–118.

    CAS  PubMed  Google Scholar 

  56. Karlsen AE, Hagopian WA, Grubin CE, Dube S, Disteche CM, Adler DA et al. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA 1991; 88: 8337–8341.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaufman DL, Houser CR, Tobin AJ . Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 1991; 56: 720–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 2009; 106: 9075–9080.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kubo K, Nishikawa K, Ishizeki J, Hardy-Yamada M, Yanagawa Y, Saito S . Thermal hyperalgesia via supraspinal mechanisms in mice lacking glutamate decarboxylase 65. J Pharmacol Exp Ther 2009; 331: 162–169.

    CAS  PubMed  Google Scholar 

  60. Kim J, Kim SJ, Lee H, Chang JW . Effective neuropathic pain relief through sciatic nerve administration of GAD65-expressing rAAV2. Biochem Biophys Res Commun 2009; 388: 73–78.

    CAS  PubMed  Google Scholar 

  61. Lee B, Kim J, Kim SJ, Lee H, Chang JW . Constitutive GABA expression via a recombinant adeno-associated virus consistently attenuates neuropathic pain. Biochem Biophys Res Commun 2007; 357: 971–976.

    CAS  PubMed  Google Scholar 

  62. Martin C, Solders G, Sonnerborg A, Hansson P . Painful and non-painful neuropathy in HIV-infected patients: an analysis of somatosensory nerve function. Eur J Pain 2003; 7: 23–31.

    PubMed  Google Scholar 

  63. Bouhassira D, Attal N, Willer JC, Brasseur L . Painful and painless peripheral sensory neuropathies due to HIV infection: a comparison using quantitative sensory evaluation. Pain 1999; 80: 265–272.

    CAS  PubMed  Google Scholar 

  64. Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol 2013; 9: 277–291.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Glorioso JC, Fink DJ . Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol 2004; 58: 253–271.

    CAS  PubMed  Google Scholar 

  66. Miyazato M, Sugaya K, Goins WF, Wolfe D, Goss JR, Chancellor MB et al. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats. Gene Ther 2009; 16: 660–668.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. End K, Gamel-Didelon K, Jung H, Tolnay M, Ludecke D, Gratzl M et al. Receptors and sites of synthesis and storage of gamma-aminobutyric acid in human pituitary glands and in growth hormone adenomas. Am J Clin Pathol 2005; 124: 550–558.

    CAS  PubMed  Google Scholar 

  68. Yu HM, Wen J, Wang R, Shen WH, Duan S, Yang HT . Critical role of type 2 ryanodine receptor in mediating activity-dependent neurogenesis from embryonic stem cells. Cell Calcium 2008; 43: 417–431.

    CAS  PubMed  Google Scholar 

  69. Kanaani J, Cianciaruso C, Phelps EA, Pasquier M, Brioudes E, Billestrup N et al. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons. PLoS One 2015; 10: e0117130.

    PubMed Central  PubMed  Google Scholar 

  70. Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 2007; 54: 889–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hanack C . GABA blocks pathological but not acute TRPV1 pain signals. Cell 2015; 160: 759–770.

    CAS  PubMed  Google Scholar 

  72. Ferando I, Mody I . Interneuronal GABAA receptors inside and outside of synapses. Curr Opin Neurobiol 2014; 26: 57–63.

    CAS  PubMed  Google Scholar 

  73. Trigo FF, Marty A, Stell BM . Axonal GABAA receptors. Eur J Neurosci 2008; 28: 841–848.

    PubMed  Google Scholar 

  74. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE et al. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004; 111: 116–124.

    CAS  PubMed  Google Scholar 

  75. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 2004; 309: 869–878.

    CAS  PubMed  Google Scholar 

  76. Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL et al. Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 2013; 89: 709–714.

    CAS  PubMed  Google Scholar 

  77. Schwartz ES, Lee I, Chung K, Chung JM . Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 2008; 138: 514–524.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 2009; 29: 159–168.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Salvemini D, Little JW, Doyle T, Neumann WL . Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51: 951–966.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Perl A, Banki K . Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid Redox Signal 2000; 2: 551–573.

    CAS  PubMed  Google Scholar 

  81. van Amerongen R, Nusse R . Towards an integrated view of Wnt signaling in development. Development 2009; 136: 3205–3214.

    CAS  PubMed  Google Scholar 

  82. Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K et al. Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain 2012; 8: 47.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Wan XZ, Li B, Li YC, Yang XL, Zhang W, Zhong L et al. Activation of NMDA receptors upregulates a disintegrin and metalloproteinase 10 via a Wnt/MAPK signaling pathway. J Neurosci 2012; 32: 3910–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cao J, Yang X, Liu YN, Suo ZW, Shi L, Zheng CR et al. GABAergic disinhibition induced pain hypersensitivity by upregulating NMDA receptor functions in spinal dorsal horn. Neuropharmacology 2011; 60: 921–929.

    CAS  PubMed  Google Scholar 

  85. Liu P, Guo WY, Zhao XN, Bai HP, Wang Q, Wang XL et al. Intrathecal baclofen, a GABAB receptor agonist, inhibits the expression of p-CREB and NR2B in the spinal dorsal horn in rats with diabetic neuropathic pain. Can J Physiol Pharmacol 2014; 92: 655–660.

    CAS  PubMed  Google Scholar 

  86. Huang W, Zheng W, Liu S, Zeng W, Levitt RC, Candiotti KA et al. HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity. Gene Ther 2014; 21: 328–336.

    CAS  PubMed  Google Scholar 

  87. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL . Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55–63.

    CAS  PubMed  Google Scholar 

  88. Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M et al. The role of TNFalpha in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology 2011; 36: 664–676.

    CAS  PubMed  Google Scholar 

  89. Dirig DM, Yaksh TL . Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. J Pharmacol Exp Ther 1995; 275: 219–227.

    CAS  PubMed  Google Scholar 

  90. Reis G, Pacheco D, Francischi J, Castro M, Perez A, Duarte I . Involvement of GABA A receptor-associated chloride channels in the peripheral antinociceptive effect induced by GABA A receptor agonist muscimol. Eur J Pharmacol 2007; 564: 112–115.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the NIH DA026734 (SH), DA025527 (SH), NS066792 (SH) and DA34749 (SH). HK and MK were supported by Professor Hiroshi Iwasaki (Anesthesiology, Asahikawa Medical University, Japan). RCL was supported by NIH DE022903. We greatly acknowledge Dr David Fink and Dr Marina Mata for providing the high-quality HSV vectors and the excellent technical assistance of Vikram Thakur (University of Michigan, Ann Arbor, MI, USA). We thank Professor Yuan Zhu (Department of Medicine, University of Michigan, MI, USA) for his anti-GABA antibody. We thank the helpful comments of Drs Goins William and Joseph C Glorioso (Microbiology and Molecular Genetics, University of Pittsburgh, PA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanda, H., Kanao, M., Liu, S. et al. HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a. Gene Ther 23, 340–348 (2016). https://doi.org/10.1038/gt.2016.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.3

This article is cited by

Search

Quick links