Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Axonal transport of AAV9 in nonhuman primate brain

Abstract

A pilot study in nonhuman primates was conducted, in which two Rhesus macaques received bilateral parenchymal infusions of adeno-associated virus serotype 9 encoding green fluorescent protein (AAV9-GFP) into each putamen. The post-surgical in-life was restricted to 3 weeks in order to minimize immunotoxicity expected to arise from expression of GFP in antigen-presenting cells. Three main findings emerged from this work. First, the volume over which AAV9 expression was distributed (Ve) was substantially greater than the volume of distribution of MRI signal (Vd). This stands in contrast with Ve/Vd ratio of rAAV2, which is lower under similar conditions. Second, post-mortem analysis revealed expression of GFP in thalamic and cortical neurons as well as dopaminergic neurons projecting from substantia nigra pars compacta, indicating retrograde transport of AAV9. However, fibers in the substantia nigra pars reticulata, a region that receives projections from putamen, also stained for GFP, indicating anterograde transport of AAV9 as well. Finally, one hemisphere received a 10-fold lower dose of vector compared with the contralateral hemisphere (1.5 × 1013 vg ml−1) and we observed a much stronger dose effect on anterograde-linked than on retrograde-linked structures. These data suggest that AAV9 can be axonally transported bi-directionally in the primate brain. This has obvious implications to the clinical developing of therapies for neurological disorders like Huntington’s or Alzheimer’s diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fiandaca MS, Varenika V, Eberling J, McKnight T, Bringas J, Pivirotto P et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 2009; 47 (Suppl 2): T27–T35.

    Article  PubMed  Google Scholar 

  2. Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson's disease. Mol Ther 2011; 19: 1048–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciesielska A, Mittermeyer G, Hadaczek P, Kells AP, Forsayeth J, Bankiewicz KS . Anterograde axonal transport of AAV2-GDNF in rat basal ganglia. Mol Ther 2011; 19: 922–927.

    Article  CAS  PubMed  Google Scholar 

  4. Kells AP, Forsayeth J, Bankiewicz KS . Glial-derived neurotrophic factor gene transfer for Parkinson's disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol Dis 2012; 48: 228–235.

    Article  CAS  PubMed  Google Scholar 

  5. Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther 2012; 20: 348–352.

    Article  PubMed  PubMed Central  Google Scholar 

  6. San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P et al. Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 2013; 20: 1178–1183.

    Article  CAS  PubMed  Google Scholar 

  7. Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2013; 21: 158–166.

    Article  CAS  PubMed  Google Scholar 

  8. Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 2014; 22: 329–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richardson RM, Kells AP, Martin AJ, Larson PS, Starr PA, Piferi PG et al. Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 2011; 89: 141–151.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cornet A, Bettelli E, Oukka M, Cambouris C, Avellana-Adalid V, Kosmatopoulos K et al. Role of astrocytes in antigen presentation and naive T-cell activation. J Neuroimmunol 2000; 106: 69–77.

    Article  CAS  PubMed  Google Scholar 

  11. Nelson PT, Soma LA, Lavi E . Microglia in diseases of the central nervous system. Ann Med 2002; 34: 491–500.

    Article  CAS  PubMed  Google Scholar 

  12. Kells AP, Hadaczek P, Yin D, Bringas J, Varenika V, Forsayeth J et al. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci USA 2009; 106: 2407–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. San Sebastian W, Kells AP, Bringas J, Samaranch L, Hadaczek P, Ciesielska A et al. Safety and tolerability of mri-guided infusion of aav2-haadc into the mid-brain of non-human primate. Mol Ther Methods Clin Dev 2014; 3: 14049.

    Article  PubMed  Google Scholar 

  14. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C et al. The "perivascular pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 2006; 14: 69–78.

    Article  CAS  PubMed  Google Scholar 

  15. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A . Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011; 286: 13532–13540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ . Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19: 1058–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinderer C, Bell P, Vite CH, Louboutin J-P, Grant R, Bote E et al. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol Ther Methods Clin Dev 2014; 1: 14051.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  20. Forsayeth J, Bankiewicz KS . Transduction of antigen-presenting cells in the brain by AAV9 warrants caution in preclinical studies. Mol Ther 2015; 23: 612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costantini LC, Jacoby DR, Wang S, Fraefel C, Breakefield XO, Isacson O . Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999; 10: 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  22. Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL . Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18: 35–51.

    Article  PubMed  Google Scholar 

  23. Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS et al. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 2001; 75: 4343–4356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McGraw HM, Friedman HM . Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J Virol 2009; 83: 4791–4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gillet JP, Derer P, Tsiang H . Axonal transport of rabies virus in the central nervous system of the rat. J Neuropathol Exp Neurol 1986; 45: 619–634.

    Article  CAS  PubMed  Google Scholar 

  26. Kelly RM, Strick PL . Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 2000; 103: 63–71.

    Article  CAS  PubMed  Google Scholar 

  27. Klingen Y, Conzelmann KK, Finke S . Double-labeled rabies virus: live tracking of enveloped virus transport. J Virol 2008; 82: 237–245.

    Article  CAS  PubMed  Google Scholar 

  28. Larsen DD, Wickersham IR, Callaway EM . Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 2007; 1: 5.

    PubMed  Google Scholar 

  29. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH . Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003; 301: 839–842.

    Article  CAS  PubMed  Google Scholar 

  30. Berardelli A, Noth J, Thompson PD, Bollen EL, Curra A, Deuschl G et al. Pathophysiology of chorea and bradykinesia in Huntington's disease. Mov Disord 1999; 14: 398–403.

    Article  CAS  PubMed  Google Scholar 

  31. Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 1998; 5: 938–945.

    Article  CAS  PubMed  Google Scholar 

  32. Krauze MT, Saito R, Noble C, Tamas M, Bringas J, Park JW et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 2005; 103: 923–929.

    Article  PubMed  Google Scholar 

  33. Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS . Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 2008; 5: 123–127.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Sangamo Inc. (Point Richmond, CA, USA) and by an NIH-NINDS grant to KSB (R01NS073940-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Bankiewicz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, F., Samaranch, L., Zhang, H. et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther 23, 520–526 (2016). https://doi.org/10.1038/gt.2016.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.24

This article is cited by

Search

Quick links